

2019 Annual Groundwater Monitoring and Corrective Action Report

LCL1 - Utility Waste Landfill Cell 1, Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Avenue, St. Louis, Missouri 63103

Submitted by:

Golder Associates Inc.

13515 Barrett Parkway Drive, Suite 260, Ballwin, Missouri, USA 63021 +1 314 984-8800

Project No. 153-140601

January 31, 2020

Table of Contents

1.0	INTR	ODUCTION	1
2.0	INST	ALLATION OR DECOMMISSIONING OF MONITORING WELLS	1
3.0	GRO	UNDWATER SAMPLING RESULTS AND DISCUSSION	1
	3.1	Detection Monitoring Program	1
	3.2	Groundwater Elevation, Flow Rate and Direction	2
4.0	STAT	IUS OF THE GROUNDWATER MONITORING PROGRAM	2
	4.1	Sampling Issues	3
5.0	ACTI	VITIES PLANNED FOR 2020	3

TABLES

Table 1 -	Summarv	of	Groundwater	Sampling Dates
	Carriery	۰.	oroananator	ounphing Dutoo

- Table 2 November 2018 Detection Monitoring Results
- Table 3 May 2019 Detection Monitoring Results
- Table 4 November 2019 Detection Monitoring Results

FIGURES

Figure 1 - Site Location Aerial Map and Monitoring Well Locations

APPENDICES

APPENDIX A Laboratory Analytical Data

APPENDIX B

Alternative Source Demonstration - November 2018 Sampling Event

APPENDIX C

Alternative Source Demonstration - May 2019 Sampling Event

APPENDIX D

Potentiometric Surface Maps

1.0 INTRODUCTION

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§§ 257.90(e)). Ameren Missouri (Ameren) has determined that the Utility Waste Landfill (UWL) at the Labadie Energy Center (LEC) is subject to the requirements of the CCR Rule. The UWL currently only operates LCL1 (Cell 1) which is an on-site landfill cell and manages Coal Combustion Residuals (CCR) from the facility. This Annual Report for the LCL1 describes CCR Rule groundwater monitoring activities from January 1, 2019 through December 31, 2019.

2.0 INSTALLATION OR DECOMMISSIONING OF MONITORING WELLS

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the LCL1. The groundwater monitoring system consists of six (6) groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1**. No new monitoring wells were installed or decommissioned in 2019 as a part of the CCR Rule monitoring program for the LCL1. For more information on the groundwater monitoring network, see the 2017 Annual Groundwater Monitoring Report for the LCL1.

3.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections review the sampling events completed for the LCL1 CCR Unit in 2019. **Table 1** below provides a summary of the groundwater samples collected in 2019 including the number of samples, the date of sample collection, and the monitoring program.

Sampling Event	BMW-1S	BMW-2S	MW-26	TMW-1	TMW-2	TMW-3	Detection or Assessment Monitoring				
		Date of Sample Collection									
January 2019 Verification Sampling Event	-	-	-	1/3/2019	1/3/2019	-	Detection				
May 2019 Detection Monitoring	5/1/2019	5/1/2019	5/8/2019	5/2/2019	5/2/2019	5/8/2019	Detection				
August 2019 Verification Sampling Event	-	-	8/21/2019	8/21/2019	8/21/2019	8/21/2019	Detection				
November 2019 Detection Monitoring	11/5/2019	11/5/2019	11/6/2019	11/5/2019	11/5/2019	11/5/2019	Detection				
Total Number of Samples Collected	2	2	3	4	4	3	NA				

Table 1 – Summary of Groundwater Sampling Dates

Notes:

1.) Detection Monitoring Events tested for Appendix III Parameters.

2.) Verification Sampling Events tested for Appendix III Parameters with initial exceedances.

3.) "-" No sample collected.

4.) NA - Not applicable.

3.1 Detection Monitoring Program

A Detection Monitoring event was completed November 7-9, 2018. Verification sampling and the statistical analysis to evaluate for Statistically Significant Increases (SSIs) for the November 2018 event were not completed until 2019 and are, therefore, included in this report. Detections of Appendix III analytes triggered a verification sampling event, which was completed on January 3, 2019 and verified one SSI. **Table 2** summarizes the results of the statistical analysis of the November 2018 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An Alternative Source Demonstration (ASD) was completed for the SSI and is provided in **Appendix B**. This ASD demonstrates that the SSI was not caused by the LCL1 CCR Unit and the LCL1 CCR Unit remains in Detection Monitoring.

A Detection Monitoring event was completed May 1-8, 2019, and testing was completed for all Appendix III analytes. Statistical analysis of the data determined that there was an SSI. **Table 3** summarizes the results of the statistical analysis of the May 2019 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**. As with the November 2018 sampling event, the SSI in the monitoring well network was not caused by the LCL1 CCR Unit and an ASD for this is provided in **Appendix C**.

As outlined in the Statistical Analysis Plan for this site, updates to the statistical limits are completed once 4 (four) to 8 (eight) new sample results are available. During the statistical analysis of the May 2019 sampling event, the statistical limits used to determine an SSI were updated according to the Statistical Analysis Plan. These updated limits will be used for November 2019 and subsequent statistical analyses.

A Detection Monitoring event was completed November 5-6, 2019, and testing was performed for all Appendix III analytes. Statistical analyses to evaluate for SSIs in the November 2019 data were not completed in 2019 and the results will be provided in the 2020 annual report. **Table 4** summarizes the results of the November 2019 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

3.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps provided in **Appendix D**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Missouri River. Water flows into and out of the alluvial aquifer because of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. Overall, based on potentiometric surface maps, a general flow direction from the south/southwest (bluffs area) to the north/northeast (Missouri River) is observed under normal river conditions. However, during periods of high river levels, groundwater flow can temporarily reverse. During these times of high river stage and temporary flow direction changes, horizontal groundwater gradients generally decrease, and little net movement of groundwater occurs.

Groundwater flow direction and hydraulic gradient were estimated for the alluvial aquifer wells at the LEC using commercially available software. Results from this assessment indicate that while groundwater flow direction is variable, the overall net groundwater flow in the alluvial aquifer at the LEC is from the bluffs toward the river. Horizontal gradients calculated by the program range from 0.0001 to 0.0007 feet/foot with an estimated net annual groundwater velocity of approximately 17 feet per year.

4.0 STATUS OF THE GROUNDWATER MONITORING PROGRAM

The LCL1 remains in Detection Monitoring. Section 5.0 provides a discussion of the activities planned for 2020.

4.1 Sampling Issues

During the May 2019 Sampling event, sample analysis for EPA method 200.7 for L-UWL-FB-1 was not performed due to laboratory error. Reported values for L-UWL-FB-1 were mistakenly reported from L-MW-26, and no method 200.7 samples were analyzed from L-UWL-FB-1. These values were determined to be incorrect based on review of the results and professional judgement. The incorrect values were not used for statistical analysis or data validation.

From approximately May to August 2019, some of the monitoring wells at the LEC were under water due to the flooding of the Missouri River. This caused a delay in the planned sampling dates of some of the monitoring wells. On July 19, July 26 and August 12, 2019, Golder performed post-flood monitoring well inspections at the LEC and found that only BMW-1S had been impacted by the flood. This monitoring well was re-developed to remove floodwater impacts to the well prior to any future groundwater elevation measurements or groundwater samples being collected. After successful re-development, BMW-1S was returned to service. No other notable sampling issues were encountered in 2019.

5.0 ACTIVITIES PLANNED FOR 2020

Detection Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2020. Statistical analysis of the November 2019 Detection Monitoring data will be completed in 2020 and included in the 2020 Annual Report.

Tables

Table 2 November 2018 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND			GROU	JNDWATER N	IONITORING W	/ELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
			No	vember 2018	Detection Mo	nitoring Event					
DATE	NA	11/7/2018	11/7/2018	NA	11/9/2018	NA	11/9/2018	NA	11/9/2018	NA	11/9/2018
рН	SU	6.83	7.12	6.2-7.44	7.00	6.437-7.305	6.94	6.303-7.517	6.93	6.55-7.207	6.81
BORON, TOTAL	μg/L	151	84.8 J	DQR	76.9 J	117.5	124	139.9	106	140	128
CALCIUM, TOTAL	μg/L	201,000	128,000	154,083	134,000	175,638	162,000	200,867	178,000	217,698	184,000
CHLORIDE, TOTAL	mg/L	5.6	1.3 J	14.4	2.7	3.603	3.7	6.933	5.5	8.489	6.7
FLUORIDE, TOTAL	mg/L	ND	ND	DQR	ND	0.2269	0.29	DQR	0.21	DQR	ND
SULFATE, TOTAL	mg/L	36.7	28.4	33.38	24.8	115	96.8	112.1	91.0	97.4	66.9
TOTAL DISSOLVED SOLIDS	mg/L	751	958 J	520.2	494 J	694.1	677 J	775.5	686 J	752.2	720 J
				January 201	9 Verification	Sampling					
DATE	NA						1/3/2019		1/3/2019		
рН	SU						6.98		6.95		
BORON, TOTAL	µg/L						117.0				
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L						3.6				
FLUORIDE, TOTAL	mg/L						0.23		0.20 J		
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L										

NOTES:

1. Unit Abbreviations: μ g/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.

4. NA - Not applicable.

5. Prediction Limits calculated using Sanitas Software.

6. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

7. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

8. Values highlighted in green indicate an initial exceedance above the prediction limit that was not confirmed by Verification Sampling (not an SSI).

9. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

Table 3 May 2019 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND			GROU	JNDWATER M	10NITORING W	/ELLS		
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
				May 2019 Det	ection Monit	oring Event					
DATE	NA	5/1/2019	5/1/2019	NA	5/8/2019	NA	5/2/2019	NA	5/2/2019	NA	5/8/2019
рН	SU	6.53	6.18	6.2-7.44	6.02	6.437-7.305	6.91	6.303-7.517	6.87	6.55-7.207	5.83
BORON, TOTAL	μg/L	111	61.3 J	DQR	98.2 J	117.5	109	139.9	98.5 J	140.0	114
CALCIUM, TOTAL	μg/L	196,000	126,000	154,083	182,000	175,638	164,000 J	200,867	176,000	217,698	170,000
CHLORIDE, TOTAL	mg/L	4.4	1.4	14.4	3.3	3.603	3.7	6.933	5.3	8.489	6.2
FLUORIDE, TOTAL	mg/L	0.22	0.21	DQR	0.20	0.2269	0.24	DQR	0.24	DQR	0.19 J
SULFATE, TOTAL	mg/L	39.2	29.4	33.38	19.3	115	98.6 J	112.1	86.4	97.4	48.9
TOTAL DISSOLVED SOLIDS	mg/L	740	459	520.2	516	694.1	664	775.5	676	752.2	733
			1	August 2019 Ve	erification Sar	npling Event					
DATE	NA				8/21/2019		8/21/2019		8/21/2019		8/21/2019
рН	SU				6.54		6.61		6.45		6.57
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L				142,000						
CHLORIDE, TOTAL	mg/L						4.4				
FLUORIDE, TOTAL	mg/L				0.15 J		ND		ND		
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L										

NOTES:

1. Unit Abbreviations: μ g/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.

4. NA - Not applicable.

5. Prediction Limits calculated using Sanitas Software.

6. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

7. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

8. Values highlighted in green indicate an initial exceedance above (or below for pH) the prediction limit that was not confirmed by Verification Sampling (not a SSI).

9. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

Table 4 November 2019 Detection Monitoring Results LCL1 - Utility Waste Landfill Cell 1 Labadie Energy Center, Franklin County, MO

		BACKG	ROUND	G	ROUNDWATE	R MONITORIN	g wells
ANALYTE	UNITS	BMW-1S	BMW-2S	MW-26	TMW-1	TMW-2	TMW-3
	No	vember 2019 l	Detection Mor	nitoring Event			
DATE	NA	11/5/2019	11/5/2019	11/6/2019	11/5/2019	11/5/2019	11/5/2019
рН	SU	6.83	7.08	7.30	6.94	6.95	6.74
BORON, TOTAL	μg/L	122	61.2 J	423	101	97.3 J	122
CALCIUM, TOTAL	μg/L	194,000	125,000	146,000	174,000 J	177,000	176,000
CHLORIDE, TOTAL	mg/L	4.8	3.3	22.5	4.4	4.9	5.5
FLUORIDE, TOTAL	mg/L	ND	0.12 J	ND	0.15 J	0.13 J	0.089 J
SULFATE, TOTAL	mg/L	29.9	28.5	18.1	109	82.6	44.5
TOTAL DISSOLVED SOLIDS	mg/L	700	425	540	673	687	604

NOTES:

1. Unit Abbreviations: μ g/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.

4. NA - Not applicable.

Prepared By: RJF Checked By: KAB Reviewed By: CMR

Figures

I IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFIED FF

APPENDIX A

Laboratory Analytical Data

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 09, 2019

Mark Haddock Golder Associates 820 S. Main St Suite 100 Saint Charles, MO 63301

RE: Project: AMEREN GW SAMPLING Pace Project No.: 60291121

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on January 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Jeffrey Ingram, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Certification Number: 10090 Arkansas Drinking Water WY STR Certification #: 2456.01 Arkansas Certification #: 18-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 / E10426 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070 Missouri Certification Number: 10090

SAMPLE SUMMARY

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60291121001	L-TMW-2	Water	01/03/19 12:10	01/04/19 03:25
60291121002	L-TMW-1	Water	01/03/19 13:00	01/04/19 03:25
60291121003	L-LCLI-FB-1	Water	01/03/19 13:00	01/04/19 03:25
60291121004	L-LCLI-DUP-1	Water	01/03/19 13:00	01/04/19 03:25

SAMPLE ANALYTE COUNT

Project:AMEREN GW SAMPLINGPace Project No.:60291121

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60291121001	L-TMW-2	EPA 300.0	MGS	1	PASI-K
60291121002	L-TMW-1	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60291121003	L-LCLI-FB-1	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60291121004	L-LCLI-DUP-1	EPA 200.7	CTR	2	PASI-K
		SM 2540C	AJS	1	PASI-K
		EPA 300.0	MGS	3	PASI-K

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Sample: L-TMW-2 Lab ID: 60291121		60291121001	Collected	d: 01/03/19	12:10	Received: 01/	04/19 03:25 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Fluoride	0.20J	mg/L	0.20	0.19	1		01/08/19 22:09	16984-48-8	

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Sample: L-TMW-1	Lab ID:	60291121002	Collected	d: 01/03/19	13:00	Received: 01/	04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	117	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 10:55	7440-42-8	
Calcium	169000	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 10:55	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	670	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	3.6	mg/L	1.0	0.29	1		01/08/19 22:25	16887-00-6	
Fluoride	0.23	mg/L	0.20	0.19	1		01/08/19 22:25	16984-48-8	
Sulfate	98.6	mg/L	10.0	2.4	10		01/09/19 12:26	14808-79-8	

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Sample: L-LCLI-FB-1	Lab ID:	60291121003	Collected	d: 01/03/19	13:00	Received: 01/	04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	<12.5	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 11:02	7440-42-8	
Calcium	<53.5	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 11:02	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	6.0	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.29	mg/L	1.0	0.29	1		01/08/19 23:29	16887-00-6	
Fluoride	<0.19	mg/L	0.20	0.19	1		01/08/19 23:29	16984-48-8	
Sulfate	<0.24	mg/L	1.0	0.24	1		01/08/19 23:29	14808-79-8	

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

Sample: L-LCLI-DUP-1	Lab ID:	60291121004	Collected	d: 01/03/19	13:00	Received: 01/	04/19 03:25 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	107	ug/L	100	12.5	1	01/08/19 09:37	01/09/19 11:04	7440-42-8	
Calcium	169000	ug/L	200	53.5	1	01/08/19 09:37	01/09/19 11:04	7440-70-2	
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	666	mg/L	5.0	5.0	1		01/08/19 08:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	3.6	mg/L	1.0	0.29	1		01/09/19 00:01	16887-00-6	
Fluoride	0.21	mg/L	0.20	0.19	1		01/09/19 00:01	16984-48-8	
Sulfate	100	mg/L	10.0	2.4	10		01/09/19 00:17	14808-79-8	

QUALITY CONTROL DATA

Project:	AMEREN GW SA	MPLING										
Pace Project No.:	60291121											
QC Batch:	563580		Analys	sis Method	: E	EPA 200.7						
QC Batch Method:	EPA 200.7		Analys	sis Descrip	tion: 2	200.7 Metals,	Total					
Associated Lab Sar	nples: 60291121	002, 60291121003	, 60291121	004								
METHOD BLANK:	2312313		Ν	Matrix: Wa	ater							
Associated Lab Sar	nples: 60291121	002, 60291121003	, 60291121	004								
			Blank	K F	Reporting							
Parar	neter	Units	Resul	lt	Limit	MDL		Analyzed	Qua	alifiers		
Boron		ug/L		<12.5	100)	12.5 01/	09/19 10:36	6			
Calcium		ug/L	•	<53.5	200)	53.5 01/	09/19 10:36	6			
LABORATORY CO	NTROL SAMPLE:	2312314										
			Spike	LCS	5	LCS	% Red	0				
Parar	neter	Units	Conc.	Resu	ult	% Rec	Limits	; Qi	alifiers	_		
Boron		ug/L	1000)	1010	101	85	5-115				
Calcium		ug/L	10000)	10400	104	85	5-115				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 23123	15		2312316							
			MS	MSD								
– (60291121002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	. .
Paramete	er Ur	Its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug	/L 117	1000	1000	1150	1140	103	102	70-130	1	20	
Calcium	ug	/L 169000	10000	10000	178000	180000	95	109	70-130	1	20	
MATRIX SPIKE SA	MPLE:	2312351										
			602911	19003	Spike	MS	N	1S	% Rec			
Parar	neter	Units	Res	ult	Conc.	Result	%	Rec	Limits		Quali	iers
Boron		ug/L		5890	1000	69	50	106	70-	130		
Calcium		ug/L		72200	10000	828	00	106	70-	130		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:	AMEREN GW SA	MPLING					
Pace Project No.:	60291121						
QC Batch:	563588		Analysis M	ethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total D	issolved Solids	
Associated Lab San	nples: 60291121	002, 6029112100	3, 60291121004				
METHOD BLANK:	2312355		Matri	x: Water			
Associated Lab San	nples: 60291121	002, 6029112100	3, 60291121004				
			Blank	Reporting			
Paran	neter	Units	Result	Limit	MDL	Analyz	ed Qualifiers
Total Dissolved Solie	ds	mg/L	<5.0	0 5	5.0	5.0 01/08/19	08:39
LABORATORY COM	NTROL SAMPLE:	2312356					
Paran	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solid	ds	mg/L	1000	1000	100	80-120	
SAMPLE DUPLICA	TE: 2312358						
			60291119003	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solid	ds	mg/L	53 ⁻	1 5	28	1	10
SAMPLE DUPLICA	TE: 2312359						
-			60291121002	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solie	ds	mg/L	670	0 6	69	0	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	AMEREN GW SAMPLING

Pace Project No.: 60291121

Sulfate

acei	TUJECT NO	0023112

QC Batch:	56369	95	Analysis Method:	EPA 300.0
QC Batch Method:	EPA 3	300.0	Analysis Description:	300.0 IC Anions
Associated Lab Samp	oles:	60291121001, 60291121002, 6	60291121003, 60291121004	

mg/L

METHOD BLANK: 2312684		Matrix:	Water				
Associated Lab Samples: 60291121	001, 60291121002	2, 60291121003, 6	0291121004				
		Blank	Reporting				
Parameter	Units	Result	Limit	MDL	Analyz	ed Qua	alifiers
Chloride	mg/L	<0.29	1	.0 0.	29 01/08/19	17:20	
Fluoride	mg/L	<0.19	0.2	20 0.	19 01/08/19	17:20	
Sulfate	mg/L	<0.24	1	.0 0.	24 01/08/19	17:20	
LABORATORY CONTROL SAMPLE:	2312685						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc. I	Result	% Rec	Limits	Qualifiers	
Chloride	mg/L	5	4.6	92	90-110		
Fluoride	mg/L	2.5	2.5	100	90-110		

MATRIX SPIKE & MATRIX SPIK	E DUPLI	CATE: 23126	86		2312687							
		60291119003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	19.0	5	5	24.4	25.0	109	119	90-110	2	15	E,M1, R1
Fluoride	mg/L	<0.19	2.5	2.5	2.6	2.7	97	102	90-110	5	15	
Sulfate	mg/L	278	100	100	382	386	104	109	90-110	1	15	

4.9

98

90-110

5

MATRIX SPIKE SAMPLE:	2312688						
		60291121002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	3.6	5	8.9	106	90-110	
Fluoride	mg/L	0.23	2.5	2.9	105	90-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: AMEREN GW	V SAMPLING							
Pace Project No.: 60291121								
QC Batch: 563846		Analysis M	ethod: El	PA 300.0				
QC Batch Method: EPA 300.0		Analysis De	escription: 30	00.0 IC Anions				
Associated Lab Samples: 6029	1121002							
METHOD BLANK: 2313290		Matrix	x: Water					
Associated Lab Samples: 6029	1121002							
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers	3	
Sulfate	mg/L	<0.24	4 1.0	0.2	01/09/19 11:	19		
LABORATORY CONTROL SAMPL	LE: 2313291							
		Spike	LCS	LCS	% Rec			
Parameter	Units	Conc.	Result	% Rec	Limits C	Qualifiers		
Sulfate	mg/L	5	4.8	97	90-110			
MATRIX SPIKE & MATRIX SPIKE	DUPLICATE: 23132	92	2313293					
		MS MS	SD					
Parameter	60291121002 Units Result	Spike Sp Conc. Co	ike MS nc. Result	MSD Result %	MS MSD 6 Rec % Rec	% Rec Limits RPD	Max RPD	Qual
Sulfate	mg/L 98.6	50	50 152	152	108 107	7 90-110 0) 15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN GW SAMPLING

Pace Project No.: 60291121

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	AMEREN GW SAMPLING
Pace Project No .:	60291121

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60291121002	L-TMW-1	EPA 200.7	563580	EPA 200.7	563633
60291121003	L-LCLI-FB-1	EPA 200.7	563580	EPA 200.7	563633
60291121004	L-LCLI-DUP-1	EPA 200.7	563580	EPA 200.7	563633
60291121002	L-TMW-1	SM 2540C	563588		
60291121003	L-LCLI-FB-1	SM 2540C	563588		
60291121004	L-LCLI-DUP-1	SM 2540C	563588		
60291121001	L-TMW-2	EPA 300.0	563695		
60291121002	L-TMW-1	EPA 300.0	563695		
60291121002	L-TMW-1	EPA 300.0	563846		
60291121003	L-LCLI-FB-1	EPA 300.0	563695		
60291121004	L-LCLI-DUP-1	EPA 300.0	563695		

Pace Analytical Sample Condition Up	oon Receipt	WO#:60291121
Client Name: Golder Arboerch		
Courier: FedEx UPS VIA Clay P		Pace Xroads Client Other
Tracking #: Pace	Shipping Label Use	
Custody Seal on Cooler/Box Present: Tes/C NO C	Seals intact: Tes	
Thermometer Used: (7-37) Type of	Ice: Wet Blue No	
Cooler Temperature (°C): As read $\Delta \leq$ Corr Facto		Date and initials of person Ac
Temperature should be above freezing to 6°C		examining contents. 1/4/19
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	Dyes DNO DN/A	
Samples arrived within holding time:	TYPES DNO DN/A	
Short Hold Time analyses (<72hr)		
Rush Turn Around Time requested:		
Sufficient volume:		
Pace containers used.		
Containers intact.		
Unpreserved 5035A / TX1005/1006 soils trozen in 48nrs?		
Filtered volume received for dissolved tests?		Got Dip sample 2-Dip-1 (BPRU, BPBN) - II
Sample labels match COC: Date / time / ID / analyses		doesn't real 6-2221 like the provision sample.
Samples contain multiple phases? Matrix: HT		List comple IDe volumes let #"o of procedure and the
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	LYes UNO UN/A	date/time added.
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)		
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	🗆 Yes 💋 No	Dup is L-LCLI - Dup-1
Potassium iodide test strip turns blue/purple? (Preserve)	TYes ZNo	
Trip Blank present:	□Yes □No ØN/A	
Headspace in VOA vials (>6mm):	□Yes □No ØN/A	
Samples from USDA Regulated Area: State:	□Yes □No ☑N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	Í □Yes □No ØN/A	
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Ti	me:	
Comments/ Resolution:		
Janu Churk		1/7/19
Project Manager Review:	Dat	te:

141

	vtical erabs com	
~	Ce Anal	
2	Pai	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Section A	at Information:	Section B Required Project Information:	Section C Invoice Information:	Page: 0f	of
Company:	Golder Associates	Report To: Mark Haddock (mhaddock@golder.com)	Attention:		
Address:	820 South Main Street, Suite 100	Copy To: Jeffrey Ingram	Company Name:	REGULATORY AGENCY	
	St Charles, MO 63301		Address		INKING WATER
Email To:	maddock@golder.com	Purchase Order No.:	Pace Quole Reference:	L UST L RCRA L OTHE	LER
Phone: 636	-724-9191 Fax: 636-724-9323	Project Name: Amino 1, W Sumoline	Pace Project Jamie Church Manaper	Site Location MO	
Requested D	ue Date/TAT: Standard	Project Number: 1531400, 0001 LCLI Lall	Pace Ptolite #. 9285	STATE:	
				Requested Analysis Filtered (Y/N)	
Sec	tion D Valid Matrix Co uired Client Information MATRIX	odes E	Preservatives		
	DRINKING WATER WASTE WASTE WASTE WASTE PRODUCT SOLISOLID	DW DW WT COMPOSITE COMPOSITE ENDIGRAB	OLLECTION S	(N/Y) 9	
	SAMPLE ID (A-Z, 0-9/ -) Sample IDs MUST BE UNIQUE	다. 1 2 3 분 원 : 2 2 3 년 년 (C=	0 TA 9M3 RENIATU Dev I Peor I Contention I I		1011
# МЭТ		DATRIX C TAMPLE T TAMPLE T TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE TAMPLE T TAMPLE T	The second sec	Boron Calcium Chloride Sulfate Sulfate TDS TDS	oject No./ Lab I.D.
1	E MANT - 1	wr G . 1/3/14 1210	21	V BOAL BRAN	00i
- ~			1° 3 3	1 1111 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-COO
3 6	L- E LCLI-F8-	MT 6 1 1300	211	NET NET NOT TI 1 1 1 1	003
0 4	L - DUP-1	WT G	211	777777	100
ß		WT G			
9		WT G			
~		WT G			
α σ					
10		WT G			
11		WT G			
12	A DIVISION OF A DIVISIONO OF		TE TIME ACCEPTED BY /	AFFILIATION DATE TIME SAMPLE CO	CONDITIONS
		1 1/ 1/11		14. 1. le 2011 - 1 - 1	~ ~
	2	40 /1 2m / boland 1151	11+10 C Srockert	1 aco crea 114/1 322/	
F					
age	B.,	SAMPLER NAME AND SIG	NATURE	ealed v O	(N/N)
16 (PRINT Name of SAM	APLER: Eric Schneider	ceived Stand	() 19loc olec () (V/Y)
of 16		SIGNATURE of SAM	APLER: Go MA	DATE Signed $b_1/\partial 3/19$ $ = = 0.05$	o) o) ns2

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

MEMORANDUM

Project No. 1531406

DATE January 10, 2019

TO Project File Golder Associates

СС

FROM Tommy Goodwin

EMAIL tgoodwin@golder.com

DATA VALIDATION SUMMARY: AMEREN – LABADIE ENERGY CENTER – VERIFICATION SAMPLING – DATA PACKAGE 60291121

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data gualification was required:

- When analytes exceeded the recovery criteria for MS/MSD of a sample, the sample result was not qualified on MS/MSD data alone.
- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compar Project Reviewe	ny Name: <u>Golder Associates</u> Name: <u>Ameren - 7 EC - VS - Jan 19 - 1</u> er: <u>TGoodwin</u>	<u>La</u> 1	Proj Proj Valie	ect Manager ect Number: dation Date:	r: <u>J Ingram</u> : <u>1531406</u> ://o/19
Laborat Analytic Matrix: Sample I	ory: <u>Pace Analytical</u> al Method (type and no.): <u>Metals (200.7820878), Hg (7470),</u> ☐ Air ☐ Soil/Sed. X Water ☐ Waste Names <u>L-TMW-Z, L-TMW-I, L-LCLI-</u>	2 Aik (SM 28 D FB-1, 1	D SDC SOB), TDS - LCLI	5 #: 602 9 (SM 2540C), Fe	11121 (5) e (SM 3500-Fe B#4), Anions (300.0), P (365.4), <u>Ra (903 18904.0)</u> (7)
NOTE:	Please provide calculation in Comment areas o	r on the	back (if	on the back	comment areas).
	Sampling datas potod?	IE3			1/2/19
a) b)	Sampling dates noted?				
c)	Sample location noted?				
d)	Sample depth indicated (Soils)?				
e)	Sample type indicated (grab/composite)?				Grab
0, D	Field QC noted?				
a)	Field parameters collected (note types)?				pH. Cond. Turb. Temp. DO. ORP. O. DTW
b)	Field Calibration within control limits?	x			<u>1-2 </u>
i)	Notations of unacceptable field conditions/perform	ances fro	om field l	oas or field r	notes?
,			x	Ū	
j)	Does the laboratory narrative indicate deficiencies Note Deficiencies:	?		X	
			10. 		
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	x			
b)	Was the COC signed by both field	57	_	_	
-)	and laboratory personnel?				· · · · · · · · · · · · · · · · · · ·
C)	vvere samples received in good condition?	LX			· · · · · · · · · · · · · · · · · · ·
Genera	II (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?			x	
b)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?	x			
d)	Was the correct method used?	x			
e)	Were appropriate reporting limits achieved?	x			
f)	Were any sample dilutions noted?	Ø			
g)	Were any matrix problems noted?	Ø			
		/			

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA		COMMENTS
a)	Were analytes detected in the method blank(s)?		\square			
b)	Were analytes detected in the field blank(s)?	ø			FB-13	TDS/6.0)
c)	Were analytes detected in the equipment blank(s)?	′□		x		
d)	Were analytes detected in the trip blank(s)?			x		
Labora	tory Control Sample (LCS)	YES	NO	NA		COMMENTS
a)	Was a LCS analyzed once per SDG?	X				
b)	Were the proper analytes included in the LCS?	x				·
c)	Was the LCS accuracy criteria met?	Ø				
		,		0		
Duplica	ites	YES	NO	NA		COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	e sample na	ames)?)	Dup-1@ TLAW-1
		\square				FB-1@ TMw-1
b)	Were field dup. precision criteria met (note RPD)?	Ź				
c)	Were lab duplicates analyzed (note original and dup	plicate	samples)?			
		X				
d)	Were lab dup. precision criteria met (note RPD)?	Ø				
		/				
Blind S	tandards	YES	NO	NA		COMMENTS
a)	Was a blind standard used (indicate name,			x		
	analytes included and concentrations)?					
b)	Was the %D within control limits?			X		
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	(COMMENTS
a)	Was MS accuracy criteria met?	Ø				
	Recovery could not be calculated since sample contained high concentration of analyte?	, □		x		
b)	Was MSD accuracy criteria met?		Ø			<u>ci</u>
	Recovery could not be calculated since sample contained high concentration of analyte?			x		
c)	Were MS/MSD precision criteria met?	7				

Comments/Notes:

Revised May 2004

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
None				
\backslash				
				t .
	\mathbf{X}			
			\mathbf{X}	
		-		
	· · · · · · · · · · · · · · · · · · ·			<u>_</u>
L		1	I	

Signature: _______ Date: __//0/19_____

Revised May 2004

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

August 15, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR Pace Project No.: 60301804

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory between May 02, 2019 and May 10, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60301804001	L-TMW-1	Water	05/02/19 13:55	05/04/19 04:35
60301804002	L-TMW-2	Water	05/02/19 12:10	05/04/19 04:35
60301804003	L-UWL-DUP-1	Water	05/02/19 12:10	05/04/19 04:35
60302536001	L-TMW-3	Water	05/08/19 12:00	05/10/19 03:45
60302536002	L-MW-26	Water	05/08/19 10:50	05/10/19 03:45
60302536003	L-UWL-FB-1	Water	05/08/19 10:55	05/10/19 03:45
60301568004	L-BMW-1S	Water	05/01/19 11:35	05/02/19 04:13
60301568005	L-BMW-2S	Water	05/01/19 10:50	05/02/19 04:13

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60301804001	L-TMW-1	EPA 200.7	НКС	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60301804002	L-TMW-2	EPA 200.7	HKC	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60301804003	L-UWL-DUP-1	EPA 200.7	HKC	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302536001	L-TMW-3	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302536002	L-MW-26	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60302536003	L-UWL-FB-1	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	LDF	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60301568004	L-BMW-1S	EPA 200.7	EMR	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K
60301568005	L-BMW-2S	EPA 200.7	EMR	7	PASI-K
		SM 2320B	LDB	1	PASI-K
		SM 2540C	ZMH	1	PASI-K
		EPA 300.0	JDS	3	PASI-K

. . .

. .

ANALYTICAL RESULTS

-

....

Project: AMEREN LABADIE ENERGY CTR

Pace Project

-

|--|

Sample: L-TMW-1	Lab ID:	Collected: 05/02/19 13:55			Received: 05/	atrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	109	ug/L	100	10.7	1	05/15/19 08:55	05/16/19 11:43	7440-42-8	
Calcium	164000	ug/L	200	50.0	1	05/15/19 08:55	05/16/19 11:43	7440-70-2	M1
Iron	286	ug/L	50.0	14.0	1	05/15/19 08:55	05/16/19 11:43	7439-89-6	
Magnesium	44200	ug/L	50.0	13.0	1	05/15/19 08:55	05/16/19 11:43	7439-95-4	
Manganese	4600	ug/L	5.0	2.1	1	05/15/19 08:55	05/16/19 11:43	7439-96-5	
Potassium	5510	ug/L	500	79.0	1	05/15/19 08:55	05/16/19 11:43	7440-09-7	
Sodium	11200	ug/L	500	144	1	05/15/19 08:55	05/16/19 11:43	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	543	mg/L	20.0	6.5	1		05/16/19 11:02		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	664	mg/L	10.0	10.0	1		05/09/19 14:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	3.7	mg/L	1.0	0.22	1		05/16/19 21:37	16887-00-6	В
Fluoride	0.24	mg/L	0.20	0.085	1		05/16/19 21:37	16984-48-8	
Sulfate	98.6	mg/L	5.0	1.2	5		05/16/19 23:52	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 6030

60301804

Sample: L-TMW-2	Lab ID:	60301804002	Collected	d: 05/02/19	9 12:10	Received: 05/	04/19 04:35 Ma	trix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	98.5J	ug/L	100	10.7	1	05/15/19 08:55	05/15/19 17:38	7440-42-8	
Calcium	176000	ug/L	200	50.0	1	05/15/19 08:55	05/15/19 17:38	7440-70-2	
Iron	1120	ug/L	50.0	14.0	1	05/15/19 08:55	05/15/19 17:38	7439-89-6	
Magnesium	41600	ug/L	50.0	13.0	1	05/15/19 08:55	05/15/19 17:38	7439-95-4	
Manganese	2710	ug/L	5.0	2.1	1	05/15/19 08:55	05/15/19 17:38	7439-96-5	
Potassium	6540	ug/L	500	79.0	1	05/15/19 08:55	05/15/19 17:38	7440-09-7	
Sodium	9660	ug/L	500	144	1	05/15/19 08:55	05/15/19 17:38	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	576	mg/L	20.0	6.5	1		05/16/19 11:15		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	676	mg/L	10.0	10.0	1		05/09/19 14:02		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	5.3	mg/L	1.0	0.22	1		05/17/19 00:42	16887-00-6	
Fluoride	0.24	mg/L	0.20	0.085	1		05/17/19 00:42	16984-48-8	
Sulfate	86.4	mg/L	10.0	2.3	10		05/17/19 01:16	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-UWL-DUP-1	Lab ID:	60301804003	Collected	d: 05/02/19	9 12:10	Received: 05/	04/19 04:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
Boron	97.6J	ug/L	100	10.7	1	05/15/19 08:55	05/15/19 17:40	7440-42-8	
Calcium	179000	ug/L	200	50.0	1	05/15/19 08:55	05/15/19 17:40	7440-70-2	
Iron	1040	ug/L	50.0	14.0	1	05/15/19 08:55	05/15/19 17:40	7439-89-6	
Magnesium	42700	ug/L	50.0	13.0	1	05/15/19 08:55	05/15/19 17:40	7439-95-4	
Manganese	2740	ug/L	5.0	2.1	1	05/15/19 08:55	05/15/19 17:40	7439-96-5	
Potassium	6600	ug/L	500	79.0	1	05/15/19 08:55	05/15/19 17:40	7440-09-7	
Sodium	9780	ug/L	500	144	1	05/15/19 08:55	05/15/19 17:40	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	577	mg/L	20.0	6.5	1		05/16/19 11:21		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	681	mg/L	10.0	10.0	1		05/09/19 14:03		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	5.3	mg/L	1.0	0.22	1		05/17/19 01:33	16887-00-6	
Fluoride	0.24	mg/L	0.20	0.085	1		05/17/19 01:33	16984-48-8	
Sulfate	89.9	mg/L	5.0	1.2	5		05/17/19 02:40	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 6030

60201904	
 00301004	

Sample: L-TMW-3	Lab ID:	60302536001	Collected	d: 05/08/19	9 12:00	Received: 05/	10/19 03:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	114	ug/L	100	10.7	1	05/20/19 14:55	05/21/19 12:09	7440-42-8	
Calcium	170000	ug/L	200	50.0	1	05/20/19 14:55	05/21/19 12:09	7440-70-2	
Iron	321	ug/L	50.0	14.0	1	05/20/19 14:55	05/21/19 12:09	7439-89-6	
Magnesium	47000	ug/L	50.0	13.0	1	05/20/19 14:55	05/21/19 12:09	7439-95-4	
Manganese	5020	ug/L	5.0	2.1	1	05/20/19 14:55	05/21/19 12:09	7439-96-5	
Potassium	5720	ug/L	500	79.0	1	05/20/19 14:55	05/21/19 12:09	7440-09-7	
Sodium	11500	ug/L	500	144	1	05/20/19 14:55	05/21/19 12:09	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	580	mg/L	20.0	6.5	1		05/17/19 13:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	733	mg/L	10.0	10.0	1		05/15/19 16:12		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	6.2	mg/L	1.0	0.22	1		05/23/19 21:31	16887-00-6	
Fluoride	0.19J	mg/L	0.20	0.085	1		05/23/19 21:31	16984-48-8	
Sulfate	48.9	mg/L	5.0	1.2	5		05/23/19 21:48	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-MW-26	Lab ID:	60302536002	Collected	d: 05/08/19	9 10:50	Received: 05/	10/19 03:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	nod: EP	A 200.7			
Boron	98.2J	ug/L	100	10.7	1	05/20/19 14:55	05/21/19 12:11	7440-42-8	
Calcium	182000	ug/L	200	50.0	1	05/20/19 14:55	05/21/19 12:11	7440-70-2	
Iron	1200	ug/L	50.0	14.0	1	05/20/19 14:55	05/21/19 12:11	7439-89-6	
Magnesium	43500	ug/L	50.0	13.0	1	05/20/19 14:55	05/21/19 12:11	7439-95-4	
Manganese	2870	ug/L	5.0	2.1	1	05/20/19 14:55	05/21/19 12:11	7439-96-5	
Potassium	6540	ug/L	500	79.0	1	05/20/19 14:55	05/21/19 12:11	7440-09-7	
Sodium	9650	ug/L	500	144	1	05/20/19 14:55	05/21/19 12:11	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	432	mg/L	20.0	6.5	1		05/17/19 13:06		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	516	mg/L	10.0	10.0	1		05/15/19 16:13		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	3.3	mg/L	1.0	0.22	1		05/23/19 22:05	16887-00-6	
Fluoride	0.20	mg/L	0.20	0.085	1		05/23/19 22:05	16984-48-8	
Sulfate	19.3	mg/L	2.0	0.46	2		05/23/19 22:55	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-UWL-FB-1	Lab ID:	60302536003	Collected	d: 05/08/19	9 10:55	Received: 05/	10/19 03:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	95.0J	ug/L	100	10.7	1	05/20/19 14:55	05/21/19 12:14	7440-42-8	
Calcium	181000	ug/L	200	50.0	1	05/20/19 14:55	05/21/19 12:14	7440-70-2	
Iron	1110	ug/L	50.0	14.0	1	05/20/19 14:55	05/21/19 12:14	7439-89-6	
Magnesium	44000	ug/L	50.0	13.0	1	05/20/19 14:55	05/21/19 12:14	7439-95-4	
Manganese	2850	ug/L	5.0	2.1	1	05/20/19 14:55	05/21/19 12:14	7439-96-5	
Potassium	6610	ug/L	500	79.0	1	05/20/19 14:55	05/21/19 12:14	7440-09-7	
Sodium	9600	ug/L	500	144	1	05/20/19 14:55	05/21/19 12:14	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	<6.5	mg/L	20.0	6.5	1		05/17/19 13:10		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		05/15/19 16:13		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	0.45J	mg/L	1.0	0.22	1		05/23/19 23:12	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		05/23/19 23:12	16984-48-8	
Sulfate	<0.23	mg/L	1.0	0.23	1		05/23/19 23:12	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Sample: L-BMW-1S	Lab ID:	60301568004	Collected:	05/01/19	11:35	Received: 05/	02/19 04:13 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP	A 200.7			
Boron	111	ug/L	100	10.7	1	05/10/19 15:30	05/13/19 12:54	7440-42-8	
Calcium	196000	ug/L	200	50.0	1	05/10/19 15:30	05/13/19 12:54	7440-70-2	
Iron	30000	ug/L	50.0	14.0	1	05/10/19 15:30	05/13/19 12:54	7439-89-6	
Magnesium	47000	ug/L	50.0	13.0	1	05/10/19 15:30	05/13/19 12:54	7439-95-4	
Manganese	2810	ug/L	5.0	2.1	1	05/10/19 15:30	05/13/19 12:54	7439-96-5	
Potassium	5760	ug/L	500	79.0	1	05/10/19 15:30	05/13/19 12:54	7440-09-7	
Sodium	19100	ug/L	500	144	1	05/10/19 15:30	05/13/19 12:54	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	694	mg/L	20.0	6.5	1		05/13/19 13:35		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	740	mg/L	10.0	10.0	1		05/07/19 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	4.4	mg/L	1.0	0.22	1		05/15/19 17:53	16887-00-6	
Fluoride	0.22	mg/L	0.20	0.085	1		05/15/19 17:53	16984-48-8	
Sulfate	39.2	mg/L	5.0	1.2	5		05/15/19 18:10	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 6030

60301804	
----------	--

Sample: L-BMW-2S	Lab ID:	Collected: 05/01/19 10:50			Received: 05/	atrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Boron	61.3J	ug/L	100	10.7	1	05/10/19 15:30	05/13/19 12:57	7440-42-8	
Calcium	126000	ug/L	200	50.0	1	05/10/19 15:30	05/13/19 12:57	7440-70-2	
Iron	21.5J	ug/L	50.0	14.0	1	05/10/19 15:30	05/13/19 12:57	7439-89-6	
Magnesium	20900	ug/L	50.0	13.0	1	05/10/19 15:30	05/13/19 12:57	7439-95-4	
Manganese	<2.1	ug/L	5.0	2.1	1	05/10/19 15:30	05/13/19 12:57	7439-96-5	
Potassium	6860	ug/L	500	79.0	1	05/10/19 15:30	05/13/19 12:57	7440-09-7	
Sodium	9440	ug/L	500	144	1	05/10/19 15:30	05/13/19 12:57	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	392	mg/L	20.0	6.5	1		05/13/19 13:40		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	459	mg/L	10.0	10.0	1		05/07/19 11:31		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	1.4	mg/L	1.0	0.22	1		05/15/19 18:27	16887-00-6	
Fluoride	0.21	mg/L	0.20	0.085	1		05/15/19 18:27	16984-48-8	
Sulfate	29.4	mg/L	5.0	1.2	5		05/15/19 18:43	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

,	Г	10	jeci	INO.	. (00	30	I.	0

QC Batch:	583885	Analysis Method:	EPA 200.7
QC Batch Method:	EPA 200.7	Analysis Description:	200.7 Metals, Total
Associated Lab Sam	ples: 60301568004, 60301568005		
METHOD BLANK:	2395795	Matrix: Water	
METHOD BLANK: Associated Lab Sam	2395795 ples: 60301568004, 60301568005	Matrix: Water	
METHOD BLANK: Associated Lab Sam	2395795 ples: 60301568004, 60301568005	Matrix: Water Blank Reporti	ting

Boron	ua/L	<10.7	100	10.7	05/13/19 12:26	
Calcium	ug/L	<50.0	200	50.0	05/13/19 12:26	
Iron	ug/L	<14.0	50.0	14.0	05/13/19 12:26	
Magnesium	ug/L	<13.0	50.0	13.0	05/13/19 12:26	
Manganese	ug/L	<2.1	5.0	2.1	05/13/19 12:26	
Potassium	ug/L	<79.0	500	79.0	05/13/19 12:26	
Sodium	ug/L	146J	500	144	05/13/19 12:26	

	CONTROL		2305706
LADUKAIUKI	CONTROL	SAIVIPLE.	2395/90

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	970	97	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Iron	ug/L	10000	10000	100	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1000	100	85-115	
Potassium	ug/L	10000	9680	97	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2395797				2395798								
			MS	MSD								
		60301568001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L		1000	1000	9770	9690	93	85	70-130	1	20	
Calcium	ug/L		10000	10000	272000	271000	113	97	70-130	1	20	
Iron	ug/L		10000	10000	27200	27100	99	98	70-130	0	20	
Magnesium	ug/L		10000	10000	57900	57700	101	99	70-130	0	20	
Manganese	ug/L		1000	1000	3800	3780	96	94	70-130	1	20	
Potassium	ug/L		10000	10000	16800	16700	102	101	70-130	0	20	
Sodium	ug/L		10000	10000	34500	34200	102	99	70-130	1	20	

MATRIX SPIKE SAMPLE:	2395799						
		60301646001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	163	1000	1120	96	70-130	
Calcium	ug/L	63400	10000	72400	90	70-130	
Iron	ug/L	325	10000	10000	97	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

MATRIX SPIKE SAMPLE:	2395799						
		60301646001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Magnesium	ug/L	9420	10000	18700	92	70-130	
Manganese	ug/L	679	1000	1630	95	70-130	
Potassium	ug/L	302000	10000	309000	67	70-130 N	11
Sodium	ug/L	279000	10000	286000	77	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

QC Batch:	584623	Analysis Method:	EPA 200.7
QC Batch Method:	EPA 200.7	Analysis Description:	200.7 Metals, Total
Associated Lab Samp	bles: 60301804001, 60301804002, 60	301804003	

METHOD BLANK: 2398909

Matrix: Water

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<10.7	100	10.7	05/16/19 11:33	
Calcium	ug/L	<50.0	200	50.0	05/16/19 11:33	
Iron	ug/L	<14.0	50.0	14.0	05/16/19 11:33	
Magnesium	ug/L	15.8J	50.0	13.0	05/16/19 11:33	
Manganese	ug/L	<2.1	5.0	2.1	05/16/19 11:33	
Potassium	ug/L	<79.0	500	79.0	05/16/19 11:33	
Sodium	ug/L	<144	500	144	05/16/19 11:33	

LABORATORY CONTROL SAMPLE: 2398910

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	974	97	85-115	
Calcium	ug/L	10000	9980	100	85-115	
Iron	ug/L	10000	9790	98	85-115	
Magnesium	ug/L	10000	9900	99	85-115	
Manganese	ug/L	1000	980	98	85-115	
Potassium	ug/L	10000	9900	99	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2398911 2398912												
			MS	MSD								
		60301804001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	109	1000	1000	1120	1120	101	101	70-130	0	20	
Calcium	ug/L	164000	10000	10000	178000	177000	140	134	70-130	0	20	M1
Iron	ug/L	286	10000	10000	10200	10100	99	98	70-130	1	20	
Magnesium	ug/L	44200	10000	10000	55200	55100	110	108	70-130	0	20	
Manganese	ug/L	4600	1000	1000	5710	5680	112	108	70-130	1	20	
Potassium	ug/L	5510	10000	10000	15800	15700	103	102	70-130	1	20	
Sodium	ug/L	11200	10000	10000	21700	21700	105	104	70-130	0	20	

MATRIX SPIKE SAMPLE:	2398913						
		60301923002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	ND	1000	1010	96	70-130	
Calcium	ug/L	26300	10000	34600	83	70-130	
Iron	ug/L	150	10000	9420	93	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

2398913						
	60301923002	Spike	MS	MS	% Rec	
Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
ug/L	7480	10000	16700	92	70-130	
ug/L	13.1	1000	956	94	70-130	
ug/L	2990	10000	12600	96	70-130	
ug/L	54000	10000	60800	68	70-130 N	/11
	2398913 Units ug/L ug/L ug/L ug/L ug/L	2398913 <u>Units</u> <u>ug/L</u> ug/L ug/L ug/L 2990 ug/L 54000	2398913 <u>Units</u> <u>Result</u> <u>Conc.</u> <u>ug/L</u> <u>13.1</u> 1000 ug/L <u>2990</u> 10000 ug/L <u>54000</u> 10000	2398913 60301923002 Spike MS Units Result Conc. Result	2398913 60301923002 Spike MS MS Units Result Conc. Result % Rec	2398913 60301923002 Spike MS MS % Rec Units Result Conc. Result % Rec Limits ug/L 7480 10000 16700 92 70-130 ug/L 13.1 1000 956 94 70-130 ug/L 2990 10000 12600 96 70-130 ug/L 54000 10000 60800 68 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

QC Batch:	585659	Analysis Method:	EPA 200.7
QC Batch Method:	EPA 200.7	Analysis Description:	200.7 Metals, Total
Associated Lab Samp	les: 60302536001, 60302536002, 60	302536003	

METHOD BLANK: 2403215 Associated Lab Samples: 60302536001 60302536002 60302536003

Matrix: Water

Associated Lab Samples.	00302530001, 00302530002, 0			
		Blank	Reporting	
Parameter	Units	Result	Limit	MDL

Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<10.7	100	10.7	05/21/19 12:05	
Calcium	ug/L	<50.0	200	50.0	05/21/19 12:05	
Iron	ug/L	<14.0	50.0	14.0	05/21/19 12:05	
Magnesium	ug/L	<13.0	50.0	13.0	05/21/19 12:05	
Manganese	ug/L	<2.1	5.0	2.1	05/21/19 12:05	
Potassium	ug/L	<79.0	500	79.0	05/21/19 12:05	
Sodium	ug/L	<144	500	144	05/21/19 12:05	

LABORATORY CONTROL SAMPLE: 2403216

Parameter	Unite	Spike	LCS Result	LCS % Rec	% Rec	Qualifiers
	Onits			/01/00		Quanners
Boron	ug/L	1000	1020	102	85-115	
Calcium	ug/L	10000	10200	102	85-115	
Iron	ug/L	10000	9980	100	85-115	
Magnesium	ug/L	10000	10600	106	85-115	
Manganese	ug/L	1000	1060	106	85-115	
Potassium	ug/L	10000	10200	102	85-115	
Sodium	ug/L	10000	10200	102	85-115	

MATRIX SPIKE & MATRIX SPI	KE DUP	LICATE: 2403	217		2403218							
			MS	MSD								
		60302656002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	239	1000	1000	1260	1270	103	104	70-130	1	20	
Calcium	ug/L	113000	10000	10000	122000	122000	90	90	70-130	0	20	
Iron	ug/L	84.6	10000	10000	9640	9740	96	97	70-130	1	20	
Magnesium	ug/L	46100	10000	10000	56100	55700	100	96	70-130	1	20	
Manganese	ug/L	29.7	1000	1000	1080	1070	105	104	70-130	1	20	
Potassium	ug/L	76800	10000	10000	87300	87400	105	106	70-130	0	20	
Sodium	ug/L	567000	10000	10000	579000	573000	122	63	70-130	1	20	E,M1

MATRIX SPIKE SAMPLE:	2403219	60302658002	Spiko	MS	MS	% Poo	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	300	1000	1300	100	70-130	
Calcium	ug/L	74200	10000	84100	98	70-130	
Iron	ug/L	566	10000	10000	94	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

2403219						
	60302658002	Spike	MS	MS	% Rec	
Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
ug/L	10200	10000	20100	98	70-130	
ug/L	18.5	1000	1060	104	70-130	
ug/L	11600	10000	21600	101	70-130	
ug/L	87900	10000	98300	104	70-130	
	2403219 Units ug/L ug/L ug/L ug/L ug/L	2403219 <u>Units</u> <u>ug/L</u> ug/L ug/L 10200 ug/L 11600 ug/L 87900	2403219 60302658002 Spike Units Result Conc. ug/L 10200 10000 ug/L 18.5 1000 ug/L 11600 10000 ug/L 87900 10000	2403219 60302658002 Spike MS Units Result Conc. Result	2403219 60302658002 Spike MS MS Units Result Conc. Result % Rec	2403219 60302658002 Spike MS MS % Rec Units Result Conc. Result % Rec Limits ug/L 10200 10000 20100 98 70-130 ug/L 18.5 1000 1060 104 70-130 ug/L 11600 10000 21600 101 70-130 ug/L 87900 10000 98300 104 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABA	DIE ENERGY CTR						
Pace Project No.: 60301804							
QC Batch: 584102	Analysis M	ethod:	SM 2320B				
QC Batch Method: SM 2320B		Analysis De	escription:	2320B Alkalin	ity		
Associated Lab Samples: 603015	68004, 60301568005						
METHOD BLANK: 2397396		Matrix	k: Water				
Associated Lab Samples: 603015	68004, 60301568005						
Parameter	Units	Blank Result	Reporting Limit	MDL	Anal	yzed	Qualifiers
Alkalinity, Total as CaCO3	mg/L	<6.5	5 20	.0	6.5 05/13/1	9 12:18	
LABORATORY CONTROL SAMPLE	2397397						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qu	alifiers
Alkalinity, Total as CaCO3	mg/L	500	497	99	90-11	0	
SAMPLE DUPLICATE: 2397398							
		60301568001	Dup		Max	(
Parameter	Units	Result	Result	RPD	RP[)	Qualifiers
Alkalinity, Total as CaCO3	mg/L		42	29	0	10	
SAMPLE DUPLICATE: 2397399							
Parameter	Units	60301568005 Result	Dup Result	RPD	Max RPI	()	Qualifiers
Alkalinity, Total as CaCO3	mg/L	392	2 40)2	3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN LABAD	IE ENERGY CTR							
Pace Project No.:	60301804								
QC Batch:	584515		Analysis Method:		SM 2320B				
QC Batch Method: SM 2320B			Analysis De	escription:	2320B Alkalin	ity			
Associated Lab San	nples: 60301804	4001, 60301804002	, 60301804003						
METHOD BLANK:	2398572		Matrix	x: Water					
Associated Lab San	nples: 60301804	4001, 60301804002	, 60301804003						
			Blank	Reporting					
Paran	neter	Units	Result	Limit	MDL		Analyz	ed	Qualifiers
Alkalinity, Total as C	CaCO3	mg/L	<6.5	5 20.	0	6.5	05/16/19	10:35	
		2398573							
		2000010	Spike	LCS	LCS	%	Rec		
Paran	neter	Units	Conc.	Result	% Rec	Li	imits	Qua	alifiers
Alkalinity, Total as C	aCO3	mg/L	500	519	104		90-110		
SAMPLE DUPLICA	TE: 2398574								
			60301804001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers
Alkalinity, Total as C	CaCO3	mg/L	543	3 54	9	1		10	
SAMPLE DUPLICA	TE: 2398575								
			60302254001	Dup			Max		
Paran	neter	Units	Result	Result	RPD		RPD		Qualifiers
Alkalinity, Total as C	CaCO3	mg/L	611	61	7	1		10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN LABAD	IE ENERGY CTR						
Pace Project No.:	60301804							
QC Batch:	585263		Analysis M	ethod:	SM 2320B			
QC Batch Method:	SM 2320B		Analysis De	escription:	2320B Alkalin	iity		
Associated Lab Sar	nples: 60302536	6001, 60302536002	2, 60302536003					
METHOD BLANK:	2401500		Matrix	x: Water				
Associated Lab Sar	nples: 60302536	6001, 60302536002	2, 60302536003					
			Blank	Reporting				
Paran	neter	Units	Result	Limit	MDL	Analyz	zed (Qualifiers
Alkalinity, Total as C	aCO3	mg/L	<6.5	5 20	.0	6.5 05/17/19	12:29	
		0404504						
LABORATORY COI	NTROL SAMPLE:	2401501	Spike	105	109	% Pec		
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers	3
Alkalinity, Total as C	aCO3	mg/L	500	506	101	90-110		
SAMPLE DUPLICA	TE: 2401502							
			60302527013	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qua	lifiers
Alkalinity, Total as C	aCO3	mg/L	498	3 49	95	1	10	
SAMPLE DUPLICA	TE: 2401503							
			60302446001	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	Qua	lifiers
Alkalinity, Total as C	aCO3	mg/L	202	2 19)7	3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABA	DIE ENERGY CTR					
Pace Project No.: 60301804						
QC Batch: 583021		Analysis M	ethod:	SM 2540C		
QC Batch Method: SM 2540C		Analysis De	escription:	2540C Total D	issolved Solids	
Associated Lab Samples: 6030156	8004, 60301568005					
METHOD BLANK: 2392610		Matrix	k: Water			
Associated Lab Samples: 6030156	68004, 60301568005					
Parameter	Units	Blank Result	Reporting Limit	MDL	Analyz	ed Qualifiers
Total Dissolved Solids	mg/L	<5.0) 5.	0	5.0 05/07/19	11:29
LABORATORY CONTROL SAMPLE:	2392611					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Dissolved Solids	mg/L	1000	1030	103	80-120	
SAMPLE DUPLICATE: 2392612						
		60301568001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L		112	0	1	10
SAMPLE DUPLICATE: 2392613						
		60301618006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Solids	mg/L	2610) 266	0	2	10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN LABAD	DIE ENERGY CTR								
Pace Project No.:	60301804									
QC Batch:	583514		Analysis M	ethod:	SM 2540C					
QC Batch Method:	SM 2540C		Analysis De	escription:	2540C Total E	Dissolve	ed Solids			
Associated Lab Sam	ples: 60301804	4001, 60301804002	, 60301804003							
METHOD BLANK:	2394354		Matrix	x: Water						
Associated Lab Sam	ples: 60301804	4001, 60301804002	, 60301804003							
			Blank	Reporting						
Param	eter	Units	Result	Limit	MDL		Analyz	zed	Qualifiers	
Total Dissolved Solid	S	mg/L	<5.0	0 5.	0	5.0	05/09/19	13:57		
LABORATORY CON	TROL SAMPLE:	2394355								
_			Spike	LCS	LCS	%	Rec			
Param	eter	Units	Conc.	Result	% Rec	Lir	nits	Qua	lifiers	
Total Dissolved Solid	s	mg/L	1000	996	100		80-120			
SAMPLE DUPLICAT	E: 2394356									
			60301670001	Dup			Max			
Param	eter	Units	Result	Result	RPD		RPD		Qualifiers	
Total Dissolved Solid	S	mg/L	314	4 30	8	2		10		
SAMPLE DUPLICAT	E: 2394357									
_			60301786007	Dup			Max			
Param	eter	Units	Result	Result			RPD		Qualifiers	
Total Dissolved Solid	s	mg/L	4230) 472	0	11		10 D	6	
SAMPLE DUPLICAT	E: 2394358									
Des	-4	11-2-	60301804001	Dup	000		Max		Qualifian	
Param	eter		Result	Result	КРО		крр		Qualifiers	
Total Dissolved Solid	s	mg/L	664	4 67	0	1		10		
SAMPLE DUPLICAT	E: 2394359									
_			60301827001	Dup			Max		0 11	
Param	eter	Units	Result	Result	RPD		RPD		Qualifiers	
Total Dissolved Solid	S	mg/L	2220	226	0	2		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN LABAD	IE ENERGY CTR					
Pace Project No.:	60301804						
QC Batch:	584820		Analysis N	lethod:	SM 2540C		
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total Di	ssolved Solids	
Associated Lab Sar	nples: 60302536	6001, 60302536002	2, 60302536003				
METHOD BLANK:	2399596		Matri	x: Water			
Associated Lab Sar	nples: 60302536	6001, 60302536002	2, 60302536003				
			Blank	Reporting			
Paran	neter	Units	Result	Limit	MDL	Analyz	ed Qualifiers
Total Dissolved Soli	ds	mg/L	7.	5	5.0	5.0 05/15/19	16:12
		2399597					
		2000001	Spike	LCS	LCS	% Rec	
Paran	neter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Dissolved Soli	ds	mg/L	1000	1100	110	80-120	
SAMPLE DUPLICA	TE: 2399598						
			60302527015	5 Dup		Max	
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Soli	ds	mg/L	11.	8 <	5.0		
	TE: 2399599						
			60302459001	Dup		Max	
Paran	neter	Units	Result	Result	RPD	RPD	Qualifiers
Total Dissolved Soli	ds	mg/L	35	5 7	/19		 D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABAD	IE ENERGY CTR										
Pace Project No.: 60301804											
QC Batch: 584698		Anal	ysis Metho	od: E	EPA 300.0						
QC Batch Method: EPA 300.0		Anal	ysis Descr	ription: 3	300.0 IC An	ions					
Associated Lab Samples: 60301568	004, 6030156800	5									
METHOD BLANK: 2399191			Matrix: V	Vater							
Associated Lab Samples: 60301568	004, 6030156800	5									
		Bla	nk	Reporting							
Parameter	Units	Res	sult	Limit	MDI		Analyzed	Qı	alifiers		
Chloride	mg/L		<0.22	1.0	D	0.22	05/15/19 10	:10			
Fluoride	mg/L		<0.085	0.20	0	0.085	05/15/19 10	:10			
Sulfate	mg/L		<0.23	1.0	0	0.23 (05/15/19 10	:10			
LABORATORY CONTROL SAMPLE:	2399192										
		Spike	L	CS	LCS	%	Rec				
Parameter	Units	Conc.	Re	sult	% Rec	Lin	nits	Qualifiers	_		
Chloride	mg/L		5	4.6	92	2	90-110				
Fluoride	mg/L	2	.5	2.3	9	1	90-110				
Sulfate	mg/L		5	4.7	94	1	90-110				
MATRIX SPIKE & MATRIX SPIKE DUF	PLICATE: 2399	193		2399194							
		MS	MSD								
Parameter Units	60301521004 Result	Spike Conc	Spike Conc	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
		5	5	202	202	,e : 100 49	- <u></u>	80-120		15	 M1
Fluoride mg/L	0.20J	2.5	2.5	2.5	2.4	92	2 89	80-120	3	15	IVII
Sulfate mg/L	. 3.2	5	5	8.3	8.2	100) 99	80-120	1	15	
MATRIX SPIKE SAMPLE:	2399195										
		60301	1568001	Spike	MS		MS	% Rec			
Parameter	Units	Re	esult	Conc.	Result		% Rec	Limits		Quali	fiers
Chloride	mg/L			5		4.6	103	80	-120		
Fluoride	mg/L			2.5		2.0	73	80	-120 M	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

QC Batch: 585101		Analysis Met	hod:	EPA 300.0		
QC Batch Method: EPA 300.0		Analysis Des	cription:	300.0 IC Anions		
Associated Lab Samples: 603018	804001, 60301804002	2, 60301804003				
METHOD BLANK: 2400812		Matrix:	Water			
Associated Lab Samples: 603018	304001, 60301804002	2, 60301804003				
		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	0.46J	1.	0 0.22	05/16/19 18:31	
Fluoride	mg/L	<0.085	0.2	0 0.085	05/16/19 18:31	
Sulfate	mg/L	<0.23	1.	0 0.23	05/16/19 18:31	
LABORATORY CONTROL SAMPLE	2400813	Spike	1.00			

Parameter	Units	Conc.	Result	% Rec	% Rec Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.4	96	90-110	
Sulfate	mg/L	5	5.1	102	90-110	

MATRIX SPIKE & MATRIX SPI	IKE DUPL	ICATE: 2400	814		2400815							
			MS	MSD								
		60301804001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	3.7	5	5	8.4	8.4	94	95	80-120	0	15	
Fluoride	mg/L	0.24	2.5	2.5	2.5	2.6	92	93	80-120	1	15	
Sulfate	mg/L	98.6	25	25	129	127	120	115	80-120	1	15	E

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804									
QC Batch: 586587		Analysis M	ethod:	EPA 300.	0				
QC Batch Method: EPA 300.0		Analysis De	escription:	300.0 IC	Anions				
Associated Lab Samples: 603025360	001, 60302536002	, 60302536003							
METHOD BLANK: 2406378		Matrix	k: Water						
Associated Lab Samples: 603025360	01,60302536002	, 60302536003							
		Blank	Reporting	9					
Parameter	Units	Result	Limit	N	1DL	Analyz	ed	Qualifiers	
Chloride	mg/L	<0.22	2	1.0	0.22	05/23/19	10:04		
Fluoride	mg/L	<0.085	5 0	.20	0.085	05/23/19 ⁻	10:04		
Sulfate	mg/L	<0.23	3	1.0	0.23	05/23/19 ⁻	10:04		
LABORATORY CONTROL SAMPLE:	2406379								
		Spike	LCS	LCS	9	% Rec			
Parameter	Units	Conc.	Result	% Rec	I	_imits	Qualifie	ers	
Chloride	mg/L	10	9.5		95	90-110			
Fluoride	mg/L	5	4.7		95	90-110			
Sulfate	mg/L	10	9.7		97	90-110			

MATRIX SPIKE & MATRIX SPI	KE DUPL	ICATE: 2406	380		2406381							
			MS	MSD								
		60302742005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	31.3	50	50	78.9	79.7	95	97	80-120	1	15	
Fluoride	mg/L	ND	25	25	24.5	24.5	93	93	80-120	0	15	
Sulfate	mg/L	48.2	50	50	99.1	101	102	106	80-120	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

- B Analyte was detected in the associated method blank.
- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR

Pace Project No.: 60301804

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60301568004 60301568005	L-BMW-1S L-BMW-2S	EPA 200.7 EPA 200.7	583885 583885	EPA 200.7 EPA 200.7	584051 584051
60301804001 60301804002 60301804003	L-TMW-1 L-TMW-2 L-UWL-DUP-1	EPA 200.7 EPA 200.7 EPA 200.7	584623 584623 584623	EPA 200.7 EPA 200.7 EPA 200.7	584665 584665 584665
60302536001 60302536002 60302536003	L-TMW-3 L-MW-26 L-UWL-FB-1	EPA 200.7 EPA 200.7 EPA 200.7	585659 585659 585659	EPA 200.7 EPA 200.7 EPA 200.7	585727 585727 585727
60301568004 60301568005	L-BMW-1S L-BMW-2S	SM 2320B SM 2320B	584102 584102		
60301804001 60301804002 60301804003	L-TMW-1 L-TMW-2 L-UWL-DUP-1	SM 2320B SM 2320B SM 2320B	584515 584515 584515		
60302536001 60302536002 60302536003	L-TMW-3 L-MW-26 L-UWL-FB-1	SM 2320B SM 2320B SM 2320B	585263 585263 585263		
60301568004 60301568005	L-BMW-1S L-BMW-2S	SM 2540C SM 2540C	583021 583021		
60301804001 60301804002 60301804003	L-TMW-1 L-TMW-2 L-UWL-DUP-1	SM 2540C SM 2540C SM 2540C	583514 583514 583514		
60302536001 60302536002 60302536003	L-TMW-3 L-MW-26 L-UWL-FB-1	SM 2540C SM 2540C SM 2540C	584820 584820 584820		
60301568004 60301568005	L-BMW-1S L-BMW-2S	EPA 300.0 EPA 300.0	584698 584698		
60301804001 60301804002 60301804003	L-TMW-1 L-TMW-2 L-UWL-DUP-1	EPA 300.0 EPA 300.0 EPA 300.0	585101 585101 585101		
60302536001 60302536002 60302536003	L-TMW-3 L-MW-26 L-UWL-FB-1	EPA 300.0 EPA 300.0 EPA 300.0	586587 586587 586587		

Sample Condition Upon Receipt

Client Name: Golder FedEx 🖸 UPS 🗆 Courier: Clay 🗆 PEX 🗆 Pace 🗆 Xroads Client Other No Z Pace Shipping Label Used? Yes 🗆 Tracking #: Seals intact: Yes Custody Seal on Cooler/Box Present: Yes No 🗀 No 🗆 Bubble Wrap □ Foam 🗆 Packing Material: Bubble Bags None 🗆 Other 🗀 Thermometer Used: /-294 Type of Ice: Wet Blue None Date and initials of person 4 Cooler Temperature (°C): As-read 2.2 Corr. Factor -1.0 Corrected 1.2 examining contents: 514119 Temperature should be above freezing to 6°C ØYes □No □n/A Chain of Custody present: Tmw-1 Samples ave Elves DNo Samples Chain of Custody relinquished: □n/A lotth Same Yes DNo □n/A 150 mu Samples arrived within holding time: Yes Ko □n/A Short Hold Time analyses (<72hr): □Yes ØNo Rush Turn Around Time requested: □n/a ØYes □No □N/A Sufficient volume Yes No 🗋 N/A Correct containers used: Yes No □n/A Pace containers used: Ves No □n/A Containers intact: □Yes □No C/N/A Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs? □Yes □No Filtered volume received for dissolved tests? Ves DNO □n/a Sample labels match COC: Date / time / ID / analyses □Yes ZNo □N/A Samples contain multiple phases? Matrix: ZYes DNo List sample IDs, volumes, lot #'s of preservative and the Containers requiring pH preservation in compliance? □n/A date/time added. (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: □Yes □No Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve) □Yes □No □Yes □No Trip Blank present: DYes DNo ZN/A Headspace in VOA vials (>6mm): Yes No ZN/A Samples from USDA Regulated Area: State: ZN/A Additional labels attached to 5035A / TX1005 vials in the field? □Yes □No Client Notification/ Resolution: Copy COC to Client? Ν Field Data Required? Y / N Person Contacted: Date/Time: Comments/ Resolution: Jani Churk 5/6/19 Project Manager Review: Date:

WO#:60301804

Pace Analytical

à

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

		1	<u></u>	-	_	277	1777	222	17777		_
						111	111	2	ann a'		
		L				111	1111	104	11111		
				L C C		(l)	111	\sim	1111		
		1		15		(1)	111	V/	1111		
				l ₹		111	111.	10	1111		
		1		0		111	1111	1/1	11111	2	
				I S	Ľ	111	111	10	1111		2
	-			Ě	뽀	11	1111	\mathcal{D}	um.	9	/
	l °		1.00	Ē	5	111	111	\sim	(111)	· · ·	1
		L 1			0	(1)	111.	\sim	11113		t
		L		L		$\langle 0 \rangle$	III.	\sim	1111		
	-	1		0	0		111.	\sim	1111		
		1		1			1111	\sim	11111		
		Ľ –		臣	1	111	1111	$\prime\prime\prime$	1111		
	ë	L	1 (F4	1.1		derder, derd	\sim	1111	(N/T) 91	11.10
	a d		1	3			- 11	77	7111.	(14) // 00	i'a.
	-			9		I .		201			
				5	≾	9	2	11 M			-
			١¥	GROI	5	P	≥	12			
			l III	9	СĽ			5			
			1¥	$ \rangle$			1.6	12	-		
			\mathbf{X}					ĕ			_
			18			5	Щ	Ē			
			I E	ŝ		÷.	AT	Ē			-
			15		ST	8	ES	S			
			15	Ī				N.			
						1.		a.			
		-	Ŕ			, and the second		15	Z	sn.	
					1			V	z		_
		1	1		1			te			_
			1	E				e	z		
								19	7	aleline	NU(
								l &	_	-1-31-07-P	_
					1.1			-	z		
									t N /A	115	;ə
								-			-
					1.1	1.1	1				_
						-	1.1				
						12		1.1	es		
						I R			Ę,		-
						0			Š		_
	ë					Ē	85		sse		_
	atio		iei			9	6		L L		
	, Ĕ		lam				*				
	n C	2	12	10	e ote	olect	Pile				-
	ctio	ntio	Ipar	res	e Qu	e Pro	Pro				-
	Sec	Atte	LO LO	Add	Pace	Pace	Pace	L ()		SA	ЛE
				10				1		COLLECTION	14
				17							
		1.1	1.00	1							
				1							
						I.				STE RAB	
						Ē				PO CEP	
						l 🖥	¥.			ENC	
			۲ <u>و</u>			N.	8		5		
			<u>e</u> i			l é	ŭ	11	Щ		_
			틆			ne	ŭ		F		
			ы М			Ш Ш	5		ŏ	μ	
			1:E			ğ	8				
			UH I			1 g	5			STAF	
	Ë	lε	LE .			2	6			8 *	
	atio	a l	Ĕ			E .	5				
*	Ë	<u> </u>	Be			ا ق	8		<u> </u>		
	Info	é	LE L		9	۶	15		(SMC)	00=0 8AA9=0))
	oject	effr	Syal		der		er.		(Jtel of	səboo bilav əəs)	Ξ
	mă	ы П	l"		ŏ	lam,	Į un				-
	lo a	Ĕ	ic L		ase	CT N	Z ti		Ψ		
	ect	da	λ Δ		12	ole	ole		% 8	> - 2 0	
	S R	Ř	ŭ		d.	à.	à		b o	22255222	AR
			8						×	8 e.	
			Ň			-			atri	TAN AT O	
			l &			33			N X	SOL C. V	
			പ്			တို			ATI		
			12		5	24			> 2	0 < < ± × 0	
		- 0	lo		ğ	5					
			l à		le l	33	P		(
F		s	1 š	5	1 2	y V	pd			~	5
3		je	a,	302	0	Fa)	Sta			-	
SQP		Ğ.	E	63	Ĕ		1		hio	ш	Į.
1040	2	sso	18	Q	l al				, ma	5	
A s	tion	Ϋ́	8	2	,Ĕ	6	High I		lufoi	15	
N IN	ma	ē	15	wir	2	5	Ę I		ent		ζ :
-	nfor	ĕ	35	all	اڭ ا	4	T a		□ ¹ / ₂	U.)
	ŧ	U	₩	ш	.el	1	e l		lirec		
	Clie					636	ā p		Sect		
	on	any:	:;;		ë		este		47 IL		_
i.	qui dui	d L	l á		hail	0DE	1 E				
	ຶຶ	ő	8		6	E I	r N N				

Constrained Constrained Constrained <th>Samples Initial Stanting of AMPLE Samples Initial France Samples Initial France Samples Initial France Samples Initial Stanting of AMPLE Samples Initial France Samples Initial France Samples Initial France Samples Initial France Samples Samples Initial France Sample</th> <th>Required Client Information</th> <th>MATRIX Demking wated</th> <th>CODE</th> <th>a lo le</th> <th></th> <th>COLL</th> <th>ECTED</th> <th></th> <th>1</th> <th></th> <th>ц.</th> <th>reserv</th> <th>ratives</th> <th></th> <th>1/7</th> <th>z</th> <th>z z</th> <th>z</th> <th></th> <th></th> <th>1</th> <th>-</th> <th></th> <th></th> <th></th> <th><i>(</i>4</th>	Samples Initial Stanting of AMPLE Samples Initial France Samples Initial France Samples Initial France Samples Initial Stanting of AMPLE Samples Initial France Samples Initial France Samples Initial France Samples Initial France Samples Samples Initial France Sample	Required Client Information	MATRIX Demking wated	CODE	a lo le		COLL	ECTED		1		ц.	reserv	ratives		1/7	z	z z	z			1	-				<i>(</i> 4
Name Name Name Name <t< td=""><td>Samples riled Samples riled Sample</td><td>Contraction of the second seco</td><td>=GKAB C=C (see valid code 2 은 암 망 양 양 양 양 양</td><td>=CK∀B C=C</td><td>0-0 01010</td><td>S I</td><td>APOSITE FART</td><td>COMPOSI END/GRA</td><td>AB AB</td><td></td><td>S</td><td></td><td></td><td></td><td></td><td>†1</td><td>0101115/0</td><td>elstiucle</td><td>sr</td><td></td><td></td><td></td><td></td><td>(N/Y) e</td><td>-</td><td>ho</td><td></td></t<>	Samples riled Samples riled Sample	Contraction of the second seco	=GKAB C=C (see valid code 2 은 암 망 양 양 양 양 양	=CK∀B C=C	0-0 01010	S I	APOSITE FART	COMPOSI END/GRA	AB AB		S					† 1	0101115/0	elstiucle	sr					(N/Y) e	-	ho	
712/10 21 X <t< td=""><td>Signatures interest i</td><td>Sample IDs MUST BE UNIQUE (A-Z, 0.91,) (A-Z, 0.91,) 3 9 R 3 1 R 3</td><td>چ و ک MATRIX CODE SAMPLE TYPE (G</td><td>S) BAYT BJAMAS</td><td>0)</td><td>DATE</td><td>TIME</td><td>DATE</td><td>TIME</td><td>TA 9MBT BJ9MAS</td><td># OF CONTAINEP</td><td>H⁵2O⁴ Oublesetveq</td><td>HCI HCI</td><td>Na2S203 HOBN</td><td>Methanol Other</td><td>e9T eieylenA 🕽</td><td>*etals*</td><td>LDS Culotide/Fillotid</td><td>Alkalinity Total Phosonor</td><td></td><td></td><td></td><td></td><td></td><td></td><td>د No./ Lab I.D.</td><td></td></t<>	Signatures interest i	Sample IDs MUST BE UNIQUE (A-Z, 0.91,) (A-Z, 0.91,) 3 9 R 3 1 R 3	چ و ک MATRIX CODE SAMPLE TYPE (G	S) BAYT BJAMAS	0)	DATE	TIME	DATE	TIME	TA 9MBT BJ9MAS	# OF CONTAINEP	H ⁵ 2O ⁴ Oublesetveq	HCI HCI	Na2S203 HOBN	Methanol Other	e9T eieylenA 🕽	*etals*	LDS Culotide/Fillotid	Alkalinity Total Phosonor							د No./ Lab I.D.	
S1210 S1 X <td< td=""><td>STATULE of SAMPLER: LAND SCIENTING STATULE OF SAMPLES AND SCIENTING STATULE OF SAMPLES AND SCIENTING SCIEN</td><td>L-TMW-1 WT G</td><td>WT G</td><td>VI C</td><td>75</td><td></td><td></td><td>51/2/6</td><td>Se</td><td></td><td>0</td><td></td><td></td><td></td><td></td><td><u>11</u>2</td><td>X</td><td>X X</td><td>C X</td><td>C) EX</td><td>242</td><td>4</td><td>S</td><td>RY I</td><td>12 COL</td><td>R</td><td>100</td></td<>	STATULE of SAMPLER: LAND SCIENTING STATULE OF SAMPLES AND SCIENTING STATULE OF SAMPLES AND SCIENTING SCIEN	L-TMW-1 WT G	WT G	VI C	75			51/2/6	Se		0					<u>11</u> 2	X	X X	C X	C) EX	242	4	S	RY I	12 COL	R	100
S1217 - S1277	SAMPLER NAME EGANTURE SIGNATURE SIGN	L-TMW-2 WT G	WT G	Ч C	(0			5/2/19	1210		3						×	XX	X	5	ļ fac	in the	1	1 Land		~	DAA.
SIZIN - C C C C C C C C C C C C C C C C C C	SIGNATURE of SAMPLER	L-TMW-3	WT G	л с	(6	-		3)										2			1			2
DBY AFRILLATION DATE TIME SAMPLE CONDITIONS DBY AFRILLATION DATE TIME SAMPLE CONDITIONS DATE TIME SAMPLE CONDITIONS ACCEPTENDED BY AFRILLATION DATE TIME ACCEPTENDED BY AFRILLATION DATE TIME ACCEPTENDED BY AFRILLATION DATE TIME ACCEPTENDED BY AFRILLATI	Samples inlad stanting of samples inlad stanti	L-MW-26 WT G	WT G	с Г	(0	-																					_
DBY APPILIATION DATE TIME ACCEPTENDEN DATE TIME SAMPLE CONDITIONS MARKE STAM 1706 MARK 1AFTLIATION DATE TIME SAMPLE CONDITIONS MARKE STAM 1706 MARKE STAM 232 MARKE 1AFTLIATION DATE TIME SAMPLE CONDITIONS MARKE STAM 1706 MARKE STAM 232 MARKE 1AFTLIATION DATE TIME SAMPLE SA	Samples inlact Some a same a same a some a same a	L-UWL-DUP-1 WT G	WT G	ЧС	(5			SILIA	I		m	-					X	XX	X	det -	2	to the	M	8	3		~
DBY AppluATION DATE TME Accepted by I AFFLIATION DATE TME SAMPLE CONDITIONS DBY AppluATION DATE TME Accepted by I AFFLIATION DATE TME SAMPLE CONDITIONS	Samples Inlact Samples Inlact	L-UWL-FB-1 WT G	WT G	VT C	10		1									1		_				-	5				_
DPY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CONDITIONS DPY I AFFILIATION DATE TIME SAMPLE CONDITIONS TIME ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CONDITIONS TIME ACCEPTED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION ACCEPTED BY A	Samples inhact Samples inhact	L-BMW-1S WT G	WT G	ЧС	/0		-											_									_
DPY I APRILATION DATE TIME Acceptible VI AFFILIATION DATE TIME DPY I APRILATION DATE TIME Acceptible VI AFFILIATION DATE TIME DPY I APRILATION DATE TIME Acceptible VI AFFILIATION DATE TIME DPY I APRILATION DATE TIME Acceptible VI AFFILIATION DATE TIME DPY I APRILATION DATE TIME SAMPLE CONDITIONS DPY I APRILATION DATE TIME SAMPLE CONDITIONS	SamPler Intervention Date Time Accepted by Application Date Time Accepted by Application Date Time SamPle Conditions SamPle Conditions Time SamPle Conditions Time SamPle Conditions Time SamPle Conditions SamPle Conditions SamPle Conditions SamPle Conditions SamPle Conditions StamPle Conditions C	L-BMW-2S	WT G	VT G	(0		1																				_
EDBY AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CONDITIONS DEVI AFFILIATION DATE TIME SAMPLE CONDITIONS THE ACCEPTED BY I AFFILIATION DATE TIME SAMPLE CONDITIONS MARCE STATING STA	Samples Inlact Samples Inlact	WT G	WT G	10	(5								_			11					_		_				_
DBY AFFILIATION DATE TIME TIME SAMPLE CONDITIONS DBY AFFILIATION DATE TIME SAMPLE CONDITIONS THE SAMPLE SAMPL SAMPLE SAMPLE SAMP	Samples Inlact Samples Inlact	WT G	WT G	U U	(0		-										_	_	_			_					
DBY I APRILIATION DATE TIME ACCEPTENTION DATE TIME SAMPLE CONDITIONS MARKEN SAMPLE CONDITIONS MARKEN SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE SAMPLE CONDITIONS MARKEN SAMPLE	SamPLER NAME AND SIGNATURE OF AMPLER NAME AND SIGNATURE OF AMPLE CONDITIONS SamPLER NAME AND SIGNATURE SamPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: SIGNATURE OF SAMPLER: SIGN	WT G	WT G	ы Ч	(0		-											_									
EDBY AFFILIATION DATE TIME A COOPTENTION DATE TIME SAMPLE CONDITIONS THE I ACTIVATION TARGE 5/3/9 1025 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	EDBY LAFFILIATION DATE TIME ACOPTER BY LAFFILIATION DATE TIME SAMPLE CONDITIONS Samples Intel ACOPTER TARE ACCOPTER BY LAFFILIATION DATE TIME SAMPLE CONDITIONS Samples Intel ACCOPTER ACCOPTE	WT G	WT G	ЧС	(0									1			_			_				_			
1 1 100 100 10 100 100 100 100 100 100	Samples Initiad Samples Initiad Sample	ADDITIONAL COMMENTS RELINQUISHED	RELINQUISHED	ELINQUISHED	UISHED	m l	(I AFFILIATI	NOI	DAT	щ	Ē	AE	1	/ AC	clipte	VBY I	I AFFIL	IATION.	7	DAT	μ.	TIME		s	AMPLE CON	SNOLLIGI	-
(1) MLE 5/3/19 1700 12 20 12. Shin 023 22 7 2 1	Samples Initiaci	0.7: B. Ca, Fe, Mg. Mn, K. Na	4 M D	A.A	7			/	5131	5	102	n	V/a	W.	VA	2	-	PA(R	5131	191	220					
	SaMPLER NAME AND SIGNATURE Samples Inlact Received on Received on	- lon	10 Am	lo a m	200	1	M.	adde.	513/1	6	176) Joc	S	10	A.		20			Siels	RC	2132	5	2	7	1 1/	_
	SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: DATE Signed 5/2 / 7/04 SIGNATURE of SAMPLER: DATE Signed 5/2 / 7/04 DATE Signed 5/2 / 7/04	1 and I	1 mls	-		Γ			11			>													4	•	
	SAMPLER NAME AND SIGNATURE SAMPLER AND SIGNATURE PRINT Name of SAMPLER: F. C.		/ /																								r—
	SIGNATURE of SAMPLER: 1 I DATE Signed 5/2/2014 F							PRINT Name	of SAMP	PLER:	4	5.	Sch	neu	1						(ui du	bevie	oO be	(N/A)	
PRINT Name of SAMPLER: Fr. C. Schmuld I								SIGNATURE	of SAMP	PLER:	5		1	1	1		DAT	TE Sign	b B C	12/	AUC		191	29거	C	lmeč	

Client Name: <u>Colder Assoc</u> Courier: FedEx DUPS VIA Clay D Tracking #: <u>Pa</u> Custody Seal on Cooler/Box Present: Yes No D	Upon Receipt PEX □ ECI □ ace Shipping Label Used Seals intact: Yes □	WO#:60302536 WO#:60302536 Pace Xroads Client Other Yes No
Packing Material: Bubble Wrap Bubble Bags	s 🗆 💦 Foam 🗆	
Thermometer Used: <u><u> </u></u>	of Ice: Wet Blue Nor	ne , j
Cooler Temperature (°C): As-read $O.4$ Corr. Fa	ctor <u>+0.4</u> Correct	ted O.S Date and initials of person examining contents: C-10-1
Temperature should be above freezing to 6°C		
Chain of Custody present:	Yes No N/A	
Chain of Custody relinquished:	Yes No N/A	
Samples arrived within holding time:		
Short Hold Time analyses (<72hr):		
Rush Turn Around Time requested:		
Sufficient volume:		
Correct containers used:		
Pace containers used:		There are 2 COC For the
Containers intact:		Some set of Samples
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No DRIA	
Filtered volume received for dissolved tests?		
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix: r. ST		
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA Micro O&G KS TPH OK-DRO)		List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks: Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field	Id? 🛛 Yes 🗆 No 🗖 🗖 A	
Client Notification/ Resolution: Copy COC	to Client? Y N	Field Data Required? Y / N
Person Contacted: Date Comments/ Resolution:	/Time:	
		5/10/19
Project Manager Review:	Date	2:

1.

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

Page: 1 of 2		AGENCY	GROUND WATER DRINKING WATER	RCRA OTHER	C.	OM	(N/A) F	
		REGULATORY	NPDES	UST	Site Location	STATE:	Analysis Filtere	
Section C Invoice Information:	Attention:	Company Name:	Address:	Pace Ouole R. Is	Pace Project Jamie Church Manager:	Pace Profile #: 9285	Requested	1 1 1 1
Section B sequired Project Information:	aport To: Jeffrey Ingram	bopy To: Ryan Feldmann/Eric Schneider		Purchase Order No.:	Project Name: Armeren Labadie Energy Center	Project Number: 153-1406-01.0001B (COC# 3		des etcs e
Section A Required Client Information:	Company: Golder Associates	Address: 13515 Barrett Parkway Drive, Ste 260 C	Ballwin, MO 63021	Email To: Jeffrey ingram@golder.com	Phone: 636-724-9191 Fax: 636-724-9323 F	Requested Due Date/TAT: Standard		Section D Valid Matrix Co

			L													L	d		Port	America	ain D		NV P	1	ŀ				
			ł	I					ł	ł						1	Ĕ	sanhs	nate	(IBIIN	212				T				Î
	Section D Required Client Information	Valid Matrix Codes MATRIX CODE	(ifel of	(9MO		ğ	DLLECT	LED				Pre	eserv	ratives		N /A	z	z	z	z			_			1	122		
		WATER DW WATER WATER WW RASTE WATER WW SOLUSCUD P SOLUSCUD OL	seboo bilav ses	O=D 8ARD=	0 %	MPOSITE START		COMPOSITE END/GRAB	COLLECTION	SI						1 1		etsilu2\9		-SF					(N/Y) ə			2	0
# MƏTI	SamPLE II. (A-2, 0-9 /) Sample IDs MUST BE UT	NA CONTRACTOR OF A STATE) ADDS XIRTAM	SAMPLE TYPE (G	DATE	Ē	۵ پ	ATE	E E TA GMBT 3.JGMAS	# OF CONTRINER	Unpreserved	HNO ³ H ⁵ 20	IOH	RazS ₂ O3 HOBN	Methanol Other	e9T eieylenA i	*siais*	TDS Unoride/Fluorid	Alkalinity	nortqaort-tatoT					Residual Chlorin	<u>s</u> 6,			ġ
-	i-mu	0-3	T T	U			5	1 61/8	200	N	R	-		F	F		X	X	X	F	3	Da	SP	N	K	629		100	
2	L- Mi	J-26	TW	U.	-			=	250	-	-	-				_	-	-	-		-			11		-		200	
e	L - 0.0L	1-22-	WT	U	-		20	8119 1	055	4	-1	-				_	4		-1		13		-)			003	
4			Ψ	U	-							_				_	-	_							_				
5			WT	IJ												_		_											
9			ΨŢ	U				_				_						_							_				
2			WT	U		_																			_				
80		,	WT	U		-												_		_					_				
6			WT	U		/																							
10			WT	U		-						_				1													
ŧ			ΨT	U		1						_		_				_											
12			WT	0						_		-						_							_				
	ADDITIONAL CON	MMENTS	REL	INDNI	SHED B	Y / AFFIL	IATION.	-	DATE		LIME	-		ACC	CEPTE	D BV	AFFI	LIATK	N	-	DAT	u u	TIME			SAM	APLE CON	DITIONS	
-EPA 2	00.7: B, Ca, Fe, Mg, Mn, K, Ni		X	1	3 Charles	a)	de	N L	61/64	<u>n</u>	5			3	23	9	t	1	S			310	23	3	30		>		
									TTANCIO	;		_								-						l	36	cı	
						SAN	PLEK N	AME ANI	SIGNATU	Ŧ						,								1	ე₀ u	(N/) o pe	oole Soole	etul :	()
							PRIN	T Name o	f SAMPLEF	ž	1di	5		Fell	5	5								1	i dui	əviəc Y) ə:) pəj	salq	V/X)
							SIGN	IATURE o	SAMPLEF	Y	Ø	11	1º	1/2	_		(MM)	ADD/Y	- :(A	S	03	61			ıөТ	oeR ol	Sea Sea	шs2	

Sample Condition Upon Receipt

WO#	60301568
50301556	

Client Name: Goder		
Courier: FedEx 🗆 UPS 🗂 VIA 🗆 Clay 🗆 F		Pace 🗆 Xroads 🗷 Client 🖾 Other 🗔
Tracking #: Pac	e Shipping Label Used	1? Yes 🖸 No 📶
Custody Seal on Cooler/Box Present: Yes 🖉 🛛 No 🗆	Seals intact: Yes	S NO D
Packing Material: Bubble Wrap Bubble Bags	Foam 🗆	None 🗋 Other 🗆
Thermometer Used: Type of	Ice: Wet Blue Nor	ne
Cooler Temperature (°C): As-read <u>3.0</u> , <u>3.2</u> Corr. Factor Temperature should be above freezing to 6°C	Correct	ted 2.0, p.2 examining contents: 5/2/14
Chain of Custody present:	Yes No N/A	
Chain of Oustody present.		
Samples arrived within holding time:	Yes UNO UN/A	
Short Hold Time analyses (<72hr):	Yes No N/A	
Rush Turn Around Time requested:	DYes No DN/A	
Sufficient volume:	PYes INO IN/A	
Correct containers used:	Yes No N/A	
Pace containers used:	ZYes No N/A	
Containers intact:	Yes DNO DN/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	DYes No DN/A	
Filtered volume received for dissolved tests?	□Yes □No ZN/A	
Sample labels match COC: Date / time / ID / analyses	ZYes ZNO CIN/A	Sant extre samples. 2-2mil-2/5
Samples contain multiple phases? Matrix:		time + deta 5/1/19@ 1100 (3924.393)N
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	Yes No N/A	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	DYES DNO DINIA	BR34
Headspace in VOA vials (>6mm):	DYes DNo DINIA	
Samples from USDA Regulated Area: State:	Dyes DNO DN/A	
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/T	ime:	
Comments/ Resolution: Per Eric, analyze extra sample L	-LMW-4S for all para	ameters.

Project Manager Review:

Jana Church

5/4/19 Date:

F-KS-C-003-Rev.11, February 28, 2018

60301548

Section A Neurone Course Internation Context Associated	Anterna S Regional Proper Internation Region Tal Justices English	Bettler C Press Hermonies Disease			Pagel	1 -1	
Adment (2510 Darrell Partway Drive, San 20 Ballway, MCI 63021	Control - Real Casa nameli da Sansaidar / /	Serrana Karre Agrain		EQULATORY AN	NCY	1000 - 4047 G	
1	Prenting Date ha	Carline Solution Partnet Jamie Church		UST	ICAA B	OTHER	
Requires Das Coloria ()	Parallerer 153-1406-01 00010 (DUC#2)	/ and here / \$285	Requested A	arate -	MO PA		
bermalt Parte angesten State	Nen S CDILECTED	Presen alves	4 14 W 11				
SAMPLE ID NO.557 NO.557 NO.557 S.MPTELIN STATE STATE <th>ан ан а</th> <th>лис пис / асселиства 1405 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</th> <th>A THE CONTRACT OF THE CONTRACT.</th> <th>Cate 1 25/27</th> <th>Maint Cool</th> <th>Paca Project Ho</th> <th>/ Lab (D</th>	ан а	лис пис / асселиства 1405 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A THE CONTRACT OF THE CONTRACT.	Cate 1 25/27	Maint Cool	Paca Project Ho	/ Lab (D
	SAMITS IT MAKE AN PART HAVE BURNICK	assuring Artew Arter ausuring Artew Arter assuring Atter	EATE Squeet	5/1/19	i i	Reconnert dan Kertender Controler Sourded Derson (NGN)	Gampid to tot bri

MEMORANDUM

Project No. 1531406

DATE August 16, 2019

TO Project File Golder Associates

- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Tommy Goodwin

EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – DETECTION MONITORING - DATA PACKAGE 60301804

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When MS/MSD recovery exceeded the QC limits, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Goldes	Project Manager: J lugram
Project Name: America Laboratic - LCLI - BM	Project Number: 1531406-01
Reviewer: T boodurin	Validation Date: 6/16/19
Laboratory: <u>Chee Andstial - KS</u> Analytical Method (type and no.): <u>Effe zoa 7 (Methols)</u> , 23 20 B(Alk), Matrix: Air Soil/Sed. Water Waste Sample Names <u>L-TMW-1</u> , L-TMW-2, L-WL-DUP-1, L-TMW-7	SDG #: 60301804 2540C(TDS), 300.0 (Anims) 3. L-MW-26. L-UWL-FB-1. L-SMW-15. L-BMW-25

NOTE: Please provide calculation in Comment areas or on the back (if on the back please indicate in comment areas).

Field In	formation	YES	NO	NA		COMMENTS
a)	Sampling dates noted?	$\mathbf{\nabla}$				5/1 - 5/8/19
b)	Sampling team indicated?	Ø			-	,
c)	Sample location noted?	Ø			-	
d)	Sample depth indicated (Soils)?				-	8
e)	Sample type indicated (grad/composite)?	Ø			3	
f)	Field QC noted?	Z				
g)	Field parameters collected (note types)?				-	
h)	Field Calibration within control limits?				-	
i)	Notations of unacceptable field conditions/performations	nces fro	om field lo	ogs or fiel	d not	es?
			$\mathbf{\nabla}$			·····
j)	Does the laboratory narrative indicate deficiencies?			Z	-	
	Note Deficiencies:			'		
			energia de la colta de la co			
				her the state		
Chain-	of-Custody (COC)	YES	NO	NA		COMMENTS
Chain-	of-Custody (COC) Was the COC properly completed?	YES Ø	NO			COMMENTS
Chain- a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field	YES	NO			COMMENTS
Chain- a) b)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel?	YES Ø	NO			COMMENTS
Chain- a) b) c)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES ℤ ℤ	NO			COMMENTS
Chain- a) b) c) Genera	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES D D YES	NO			COMMENTS
Chain- a) b) c) Genera	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES Z Z YES	NO 			COMMENTS
Chain- a) b) c) Genera a)	of-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition?	YES Z Z YES Z	NO			COMMENTS
Chain- a) b) c) Genera a) b)	bf-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis?	YES Z Z YES Z Z	NO 		-	COMMENTS
Chain- a) b) c) Genera a) b) c)	bf-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used?	YES	NO			COMMENTS
Chain- a) b) c) Genera a) b) c) c) d)	bf-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used?	YES	0 0 0 0 0			COMMENTS
Chain- a) b) c) Genera a) b) c) d) e)	bf-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Was the correct method used? Were appropriate reporting limits achieved?	YES	NO			COMMENTS
Chain- a) b) c) Genera a) b) c) d) e) f)	bf-Custody (COC) Was the COC properly completed? Was the COC signed by both field and laboratory personnel? Were samples received in good condition? Al (reference QAPP or Method) Were hold times met for sample pretreatment? Were hold times met for sample analysis? Were the correct preservatives used? Were the correct method used? Were appropriate reporting limits achieved? Were any sample dilutions noted?	YES	0 0 0 0 0 0			COMMENTS COMMENTS See Notes

Revised May 2004

Page 1 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?				See Notes
b)	Were analytes detected in the field blank(s)?				BETTER, See Notes
c)	Were analytes detected in the equipment blank(s)?				
d)	Were analytes detected in the trip blank(s)?				
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?				
b)	Were the proper analytes included in the LCS?	D			
c)	Was the LCS accuracy criteria met?				
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample n	ames)?	DUP E L-TMW-Z
		Ľ,			FBC L-MW-26
b)	Were field dup. precision criteria met (note RPD)?				Max Field Dul RD: 4% (Linit 2013)
c)	Were lab duplicates analyzed (note original and du	plicate	samples)?)	
		ø			
d)	Were lab dup. precision criteria met (note RPD)?		Ø		TPS ("/1) BEDOT See Notes
Blind	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,				
	analytes included and concentrations)?			,	
b)	Was the %D within control limits?			D	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		\checkmark		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			Ø	
b)	Was MSD accuracy criteria met?				See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			Ø	
c)	Were MS/MSD precision criteria met?				

Comments/Notes:

MB	MS/MSD	SD	FB
-68004-05. Na (146)	46001: K()	-86007: TDS('Yi)	C1- 10.45)
-040 01-03: M& (15.8)	04001: 6 (+)	-59001: TOS	FB-1: EPA 200.7 insorrect analyte results
- 04001-03: C1- (0.46)	-23002: Na(-)	-04001: Alk(1/.)	therefore not validated
	56002: Na(-)	+ TDS(YLO)	
	-2100 1: 61-6-)		
	68001: F-(-)		
	04001: 50,2-(E)		
	1411 0	atel C dad'	NO CL STREAM

Dilutions: Sulfate was diluted in several Samples; no que libertion is necessary,

Revised May 2004

Page 2 of 3

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-1	Calcina (Ca)		T	nslusp exceeded linite
T	Sulfate (su)	-	T	ų
			v	
			\square	
			-	
-	/ /./	11		alut
Signature:	my 1 your	h		Date:8/16/2019
	- /			fan: 10

Revised May 2004

Page 3 of 3

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

September 05, 2019

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCL1 Pace Project No.: 60312685

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on August 22, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jami Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212018-1 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-18-11 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60312685001	L-MW-26	Water	08/21/19 14:10	08/22/19 02:55
60312685002	L-TMW-1	Water	08/21/19 14:35	08/22/19 02:55
60312685003	L-TMW-2	Water	08/21/19 15:00	08/22/19 02:55

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60312685001	L-MW-26	EPA 200.7	НКС	1	PASI-K
		EPA 300.0	JDS	1	PASI-K
60312685002	L-TMW-1	EPA 300.0	JDS	2	PASI-K
60312685003	L-TMW-2	EPA 300.0	JDS	1	PASI-K

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

No ·	60312685		

Sample: L-MW-26	Lab ID:	60312685001	Collected	: 08/21/19	14:10	Received: 08/2	22/19 02:55 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total Analytical Method: EPA 200.7 Preparation Method: EPA 200.7									
Calcium	142000	ug/L	200	50.0	1	08/23/19 13:43	08/26/19 17:43	7440-70-2	M1
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0								
Fluoride	0.15J	mg/L	0.20	0.085	1		09/05/19 01:25	16984-48-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

No ·	60312685	

Sample: L-TMW-1	Lab ID:	60312685002	Collected	: 08/21/19	14:35	Received: 08/	22/19 02:55 Ma	trix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0						
Chloride Fluoride	4.4 <0.085	mg/L mg/L	1.0 0.20	0.22 0.085	1 1		09/05/19 01:41 09/05/19 01:41	16887-00-6 16984-48-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

Sample: L-TMW-2	Lab ID:	60312685003	Collected	d: 08/21/19	9 15:00	Received: 08	/22/19 02:55 N	latrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Method: EPA 300.0								
Fluoride	<0.085	mg/L	0.20	0.085	1		09/05/19 02:29	9 16984-48-8	

Project:	AMEREN LABAD	IE ENERGY CTR	LCL1									
Pace Project No.:	60312685											
QC Batch:	605299		Analy	sis Metho	d: E	EPA 200.7						
QC Batch Method:	EPA 200.7		Analy	sis Descri	ption: 2	200.7 Metal	s, Total					
Associated Lab Sar	nples: 6031268	5001										
METHOD BLANK: 2474198				Matrix: W	/ater							
Associated Lab Sar	nples: 6031268	5001										
			Blar	nk	Reporting							
Paran	neter	Units	Res	ult	Limit	MDI	L	Analyzed	l Qu	ualifiers		
Calcium		ug/L		<50.0	20	C	50.0 0	8/26/19 17	:12			
LABORATORY CO	NTROL SAMPLE:	2474199										
			Spike	LC	S	LCS % Rec		Rec				
Parar	neter	Units	Conc.	Res	sult	% Rec	Lim	iits	Qualifiers	_		
Calcium		ug/L	1000	0	10200	102	2	85-115				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 2474	200		2474201							
			MS	MSD								
D (60312685001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	• •
Parameter	r Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	<u> </u>	Qual
Calcium	ug/l	142000	10000	10000	156000	158000	133	158	3 70-130	2	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	AMEREN LABA	ADIE ENERGY CTR	LCL1									
QC Batch: QC Batch Method:	607274 EPA 300.0		Analy Analy	ysis Methoo ysis Descri	d: I ption: C	EPA 300.0 300.0 IC Ani	ons					
Associated Lab San	nples: 603126	85001, 6031268500	2, 6031268	35003								
METHOD BLANK:	2481584			Matrix: W	ater							
Associated Lab San	nples: 603126	85001, 6031268500	2, 6031268 Blar Res	35003 nk	Reporting	MDI		Analyzed	0	alifiers		
Chloride Fluoride		mg/L mg/L		<0.22 <0.085	1. 0.2	0 0 0	 0.22 0.085	09/04/19 16: 09/04/19 16:	.58 58 58			
LABORATORY COM	NTROL SAMPLE	: 2481585	Spike	LC	S	LCS	%	Rec				
Paran	neter	Units	Conc.	Res	sult	% Rec	Li	mits	Qualifiers	_		
Chloride Fluoride		mg/L mg/L	2.	5 .5	4.8 2.3	9: 9:	5 3	90-110 90-110				
MATRIX SPIKE & M	IATRIX SPIKE D	UPLICATE: 2481	586 MS	MSD	2481587	,						
Parameter	· Ur	60311649003 hits Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Fluoride	m	g/L 0.67	2.5	2.5	3.1	3.0	ç	98 94	80-120	3	15	
MATRIX SPIKE SAI	MPLE:	2481588	60312	823002	Spike	MS		MS	% Rec	:		
Paran	neter	Units	Re	sult	Conc.	Result		% Rec	Limits		Qualif	iers
Fluoride		mg/L		ND	12.5		11.8	95	80	-120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60312685

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:AMEREN LABADIE ENERGY CTR LCL1Pace Project No.:60312685

al Method Batch
.7 605320

Pace Analytical Sample Condition L	non R	aceir	at	WO#:60312685
www.pacelabs.com		soon		60312685
Client Name: Golder				
Courier: FedEx 🗇 UPS 🗇 VIA 🗇 Clay 🗇 P	EX 🗋	EC		Pace 🗆 Xroads 💋 Client 🗆 Other 🗆
Tracking #: Pace	e Shippi	ng Lal	bel Use	d? Yes 🗆 No 🗹
Custody Seal on Cooler/Box Present: Yes 🗹 🛛 No 🗆	Seals	intact	: Yes 🛛	No 🗆
Packing Material: Bubble Wrap Bubble Bags	1	Fo	am 🗋	None 1 Other 🗆
Thermometer Used: 1245 Type of	Ice: V/	et B	lue No	Date and initials of person
Cooler Temperature (°C): As-read 1.2 Corr. Facto	or <u>-Ó</u> ,	2	Correc	ted 1.0 examining contents 22/19 H
Temperature should be above freezing to 6°C		_		
Chain of Custody present:	Yes	□No	□n/a	
Chain of Custody relinquished	Yes	□No	□n/A	
Samples arrived within holding time:	Yes	□No	□n/a	
Short Hold Time analyses (<72hr):	□Yes	[/No	□n/a	
Rush Turn Around Time requested:	□Yes	Z No	⊡n/A	
Sufficient volume:	Yes	□No	□n/a	
Correct containers used	Z Yes	□No	□n/a	
Pace containers used:	V Yes	□No	□n/a	
Containers intact:	/ Yes	□No	□n/a	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes	Ź№	□n/A	
Filtered volume received for dissolved tests?	□Yes	Z INo	□n/A	
Sample labels match COC: Date / time / ID / analyses	/Yes	□No	□n/A	
Samples contain multiple phases? Matrix: 🕅	□Yes	ΠNo	□n/A	
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	Yes	□No	□n/a	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:	□Yes	□No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes	□No		
Trip Blank present:	□Yes	∏ N₀	□n/a	
Headspace in VOA vials (>6mm)	□Yes	□No		
Samples from USDA Regulated Area: State:	□Yes	□No		
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes	ΠNο		
Client Notification/ Resolution: Copy COC to	Client?	Y	ΪN	Field Data Required? Y / N
Person Contacted: Date/Ti Comments/ Resolution:	me:			
		_	_	8/02/40

Project Manager	r Review:
-----------------	-----------

Jani Chush

8/23/19 Date:

	Prosedute abovirtation				- ⊢	CHAIN-	OF-CL Custody is a	SIC LEGA	L DOCL	/ AL		cal r		ues st be c		ed acct	nen.						
L	にいていた。 文字を 本の での たいい																						
Section	A Information	Section B	iect Info	imation:				Section	on C Informa	ation:										age:	1	of	
Compar	r Golder Associates	Report To: M	ark H	addock (mh	addock@	golder.con	()	Attenti	:VO							r-							
Address	13515 Barrett Parkway Drive, Ste 260 t	Copy To: Je	effrey	Ingram				Comp	any Nan	ie:						RE	GULAT	ORY AG	ENCY	1	4	12	
	Ballwin, MO 63021							Addre									NPDE	v s	GROUND	WATER	E C	NKING W	ATER
Email T	: maddock@golder.com	Purchase Ord	ler No.:	L'eb	2	てまれ	177	Pace O Referen	tuote								UST		RCRA		0	THER -	
Phone	636-724-9191 Fax 636-724-9323	Project Name	An	neren Sieda	EC SCP	A N&E		Pade P Manad	roject	Jami	e Churc	5				S	ite Loca	tion	QW				
Reques	ed Due Date/TAT: Standard	Project Numb	er. 15	3-1406.004	Soc) Je	#20)		Pace P	rofile #.	9285						-	STA	ц.		- []]			
														Rec	Juest	Ani	alysis F	iltered ((N)				
	Section D Valid Matrix Co	odes	(c ())e										t N/		2	2	_						
	Required Client Information <u>MATRIX</u>	CODE	OWE		COLLE	CTED				Frese	evarive	5	٨ .	z	z	z	t	1		11/11			
	MATER WATER WATER WATER PRODUCT PRODUCT OIL		see valid code	STAF	SITE	COMPOSIT END/GRAE	OLLECTIO:	S					† ‡		sn					(N/X) эі			Ļ
1	SAMPLE ID (A-Z, 0-97 / .) Sample IDS MUST BE UNIQUE	AR TOT	IX CODE (0				TA GMPT 3	CONTAINER	pervea	1		IOUE	səT sisyle	*s	Phosphon	nen con	22:0			dual Chlorin	R.	120	~
# MƏTI			ATAM I9MA2	DATE	TIME	DATE		# 0E	os _c H os _c H	ONH	HOBN RCBN	Mether	u V	Bj9M	To(al	one9 vne1	un			Resi	Pace Pro	ject No./	Lab I.D.
-	S-TMW-1 L-W	45-W	5	(0		8121119	410	2		-				1				Ø	22	8,831	_		00
	S-TMW-2 1-T	mul-1	1	(1)		-	435	-		_				-			1		_				004
1 0	STMW-3 L-T	2-mul	TW			4	500		_				_					~					c10
4	S-UG-3		۲ ۲	()				-					-1							+			
ŝ	S-SCLAA-DUP-1		MT V	0				_											-	+			
9	S-SCL4A-FB-1		۲.	0				-			-		-1		-				+	╞			
-	S-BMW-1S		۲.	0				_			+		-		+		t		P	╞			
80	S-BMW-3S		5	U				_		-			1				t			1			
σ ÷	-		۲ آم	0 0	-			+	-														
:			ž	0	-				_		_		-					-	_	-			
12			ħ	U	-			_					-		_								
	ADDITIONAL COMMENTS		RELIN	QUISHED BY	/ AFFILIAT	NO	DATE	-	TIME		11	ACCEPT	EGBY	I AFFI	LIATIO	z	2	۳.	TIME		SAMPLE		w
rEPA ⁺EPA	200.7: Bar Lt. Mor to, Mg. Mn. K. Ma. C. ເ. ໄ ເວົ້າມີນາງ 200.8: No	2	X	Ula.			312111	918	8	N	Jell.	T.	N.	1	8	2	122	0	222	9	>	~	\times
																			\square				
					SAMPLE	ER NAME AN	D SIGNAT	- IR		_							_	-		0.	(N	ooler	lasin
П						PRINT Name	of SAMPLI	ä	:3	SUL	Ne il	3.			TF Siar	pat	1			ui qmeī		O belse (N/Y)	(N/X)
0.04						SIGNATURE	of SAMPLI	Ë	2	1	1	1		5	MUDDIN	1 5		6/11	1	<u> </u>		əs	62

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

MEMORANDUM

Project No. 1531406

DATE September 30, 2019

- TO Project File Golder Associates
- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Tommy Goodwin

EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60312685

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When MS/MSD recovery exceeded the QC limits, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compar Project Reviewe Laborat Analytic Matrix: Sample	ny Name: <u>Golder Associates</u> Name: <u>Ameren - Labadie - LCL1 - VS</u> er: <u>T Goodwin</u> ory: <u>Pace Analytical - KS</u> al Method (type and no.): <u>EPA 200.7 (Metals); EPA 30</u> Air Soil/Sed. Water Waste Names <u>L-MW-26, L-TMW-1, L-TMW-2</u>	 0.0 (Ani	Proje Proje Valic SDG ons)	ect Managect Numb dation Da	ger: <u>J Ingram</u> er: <u>1531406</u> te: <u>9/30/2019</u> 685
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the ba	ack please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	×			8/21/2019
b)	Sampling team indicated?	×			
c)	Sample location noted?	×			
d)	Sample depth indicated (Soils)?			×	
e)	Sample type indicated (grab(composite)?	×			
f)	Field QC noted?	x			
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	×			
i)	Notations of unacceptable field conditions/performa	nces fr	om field l	ogs or fiel	ld notes?
			×		
j)	Does the laboratory narrative indicate deficiencies? Note Deficiencies:			×	
Chain		VES			
Chain-G	ST-Custody (COC)	1E9	NO	NA	COMMENTS
a)	Was the COC properly completed?	×			
b)	Was the COC signed by both field				
	and laboratory personnel?	×			
C)	Were samples received in good condition?	×			
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	×			
b)	Were hold times met for sample analysis?	×			
c)	Were the correct preservatives used?	×			
d)	Was the correct method used?	×			
e)	Were appropriate reporting limits achieved?	×			
f)	Were any sample dilutions noted?		×		
g)	Were any matrix problems noted?		×		

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks	i	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		×		
b)	Were analytes detected in the field blank(s)?			×	
c)	Were analytes detected in the equipment blank(s)?			×	
d)	Were analytes detected in the trip blank(s)?			×	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	x			
b)	Were the proper analytes included in the LCS?	×			
c)	Was the LCS accuracy criteria met?	×			
Duplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	plicate	sample na	ames)?	
			×		
b)	Were field dup. precision criteria met (note RPD)?			×	
c)	Were lab duplicates analyzed (note original and dup	olicate s	samples)?		
			x		
d)	Were lab dup. precision criteria met (note RPD)?			×	
Blind S	tandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		×		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			×	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		×		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
b)	Was MSD accuracy criteria met?		x		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
c)	Were MS/MSD precision criteria met?	×			

Comments/Notes:

MS/MSD: -85001: Calcium %Rec High

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-MW-26	Calcium (Ca)	-	J	MS/MSD Exceeded Calibration Range; %Rec High
\backslash				
		<u> </u>		
<u>in 1121</u>				
			\wedge	
				<u></u>
	1 1 1			j .
Signature:	our 1 bon	//		Date: 9/30/19
	/			

/

Revised May 2004

Page 3 of 3

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 22, 2020

Jeffrey Ingram Golder Associates 13515 Barrett Parkway Drive Suite 260 Ballwin, MO 63021

RE: Project: AMEREN LABADIE ENERGY CTR LCL1 Pace Project No.: 60320422

Dear Jeffrey Ingram:

Enclosed are the analytical results for sample(s) received by the laboratory on November 07, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

REV-1, 1/22/20: Samples L-BMW-1S and L-BMW-2S added to report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Parmi Church

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Enclosures

cc: Ryan Feldmann, Golder Tommy Goodwin, Golder Associates Mark Haddock, Golder Associates Eric Schneider, Golder Associates

CERTIFICATIONS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Missouri Inorganic Drinking Water Certification #: 10090 Arkansas Drinking Water Arkansas Certification #: 19-016-0 Arkansas Drinking Water Illinois Certification #: 004455 Iowa Certification #: 01455 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212020-2 Oklahoma Certification #: 9205/9935 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-19-12 Utah Certification #: KS000212018-8 Illinois Certification #: 004592 Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

SAMPLE SUMMARY

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60320422001	L-TMW-1	Water	11/05/19 10:20	11/07/19 09:02
60320422002	L-TMW-2	Water	11/05/19 12:43	11/07/19 09:02
60320422003	L-TMW-3	Water	11/05/19 14:44	11/07/19 09:02
60320422004	L-TMW-26	Water	11/06/19 12:49	11/07/19 09:02
60320422005	L-LCL1-DUP-1	Water	11/05/19 08:00	11/07/19 09:02
60320422006	L-LCL1-FB-1	Water	11/05/19 14:56	11/07/19 09:02
60320429007	L-BMW-1S	Water	11/05/19 10:45	11/07/19 03:50
60320429008	L-BMW-2S	Water	11/05/19 13:25	11/07/19 03:50

SAMPLE ANALYTE COUNT

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60320422001	L-TMW-1	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320422002	L-TMW-2	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320422003	L-TMW-3	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320422004	L-TMW-26	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320422005	L-LCL1-DUP-1	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320422006	L-LCL1-FB-1	EPA 200.7	EMR	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320429007	L-BMW-1S	EPA 200.7	HKC	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MGS	3	PASI-K
60320429008	L-BMW-2S	EPA 200.7	HKC	7	PASI-K
		SM 2320B	AJS2	1	PASI-K
		SM 2540C	BLA	1	PASI-K
		EPA 300.0	MJK	3	PASI-K

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60

No.: 60320422

Sample: L-TMW-1 Lab I	D: 60320422001	Collected	d: 11/05/19	10:20	Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total Analyti	cal Method: EPA 2	200.7 Prepa	ration Meth	od: EP/	A 200.7			
Boron 101	l ug/L	100	10.7	1	11/12/19 17:15	11/13/19 10:29	7440-42-8	
Calcium 174000	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 10:29	7440-70-2	M1
Iron 360) ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 10:29	7439-89-6	
Magnesium 45600) ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 10:29	7439-95-4	
Manganese 4900) ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 10:29	7439-96-5	
Potassium 5760) ug/L	500	79.0	1	11/12/19 17:15	11/13/19 10:29	7440-09-7	
Sodium 11800) ug/L	500	144	1	11/12/19 17:15	11/13/19 10:29	7440-23-5	
2320B Alkalinity Analyti	cal Method: SM 23	320B						
Alkalinity, Total as CaCO3 538	5 mg/L	20.0	6.5	1		11/12/19 12:24		
2540C Total Dissolved Solids Analytic	cal Method: SM 28	540C						
Total Dissolved Solids 673	3 mg/L	10.0	10.0	1		11/11/19 13:18		
300.0 IC Anions 28 Days Analyti	cal Method: EPA 3	0.00						
Chloride 4.4	t mg/L	1.0	0.22	1		11/15/19 13:32	16887-00-6	
Fluoride 0.15.	J mg/L	0.20	0.085	1		11/15/19 13:32	16984-48-8	M1
Sulfate 109	mg/L	10.0	2.3	10		11/15/19 14:22	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

+ No ·	60320422	

Sample: L-TMW-2	Lab ID:	60320422002	Collected	d: 11/05/19	12:43	Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	97.3J	ug/L	100	10.7	1	11/12/19 17:15	11/13/19 10:37	7440-42-8	
Calcium	177000	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 10:37	7440-70-2	
Iron	2390	ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 10:37	7439-89-6	
Magnesium	41100	ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 10:37	7439-95-4	
Manganese	2560	ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 10:37	7439-96-5	
Potassium	6300	ug/L	500	79.0	1	11/12/19 17:15	11/13/19 10:37	7440-09-7	
Sodium	9590	ug/L	500	144	1	11/12/19 17:15	11/13/19 10:37	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	567	mg/L	20.0	6.5	1		11/12/19 12:37		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	687	mg/L	10.0	10.0	1		11/11/19 13:18		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	4.9	mg/L	1.0	0.22	1		11/15/19 15:45	16887-00-6	
Fluoride	0.13J	mg/L	0.20	0.085	1		11/15/19 15:45	16984-48-8	
Sulfate	82.6	mg/L	10.0	2.3	10		11/15/19 16:01	14808-79-8	

11/15/19 16:18 16984-48-8

11/15/19 16:35 14808-79-8

ANALYTICAL RESULTS

Project: AMEREN LABADIE ENERGY CTR LCL1

0.089J

44.5

mg/L

mg/L

Pace Project No.: 60320422

Fluoride

Sulfate

Sample: L-TMW-3	Lab ID:	60320422003	Collecte	d: 11/05/19	9 14:44	Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	nod: EF	PA 200.7			
Boron	122	ug/L	100	10.7	1	11/12/19 17:15	11/13/19 10:39	7440-42-8	
Calcium	176000	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 10:39	7440-70-2	
Iron	6070	ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 10:39	7439-89-6	
Magnesium	37000	ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 10:39	7439-95-4	
Manganese	1220	ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 10:39	7439-96-5	
Potassium	6650	ug/L	500	79.0	1	11/12/19 17:15	11/13/19 10:39	7440-09-7	
Sodium	7570	ug/L	500	144	1	11/12/19 17:15	11/13/19 10:39	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	585	mg/L	20.0	6.5	1		11/12/19 12:45		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	604	mg/L	10.0	10.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
Chloride	5.5	mg/L	1.0	0.22	1		11/15/19 16:18	16887-00-6	

0.20

10.0

0.085

2.3

1

10

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

ct No.:	60320422	

Sample: L-TMW-26	Lab ID:	60320422004	Collected	d: 11/06/19	12:49	Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
Boron	423	ug/L	100	10.7	1	11/12/19 17:15	11/13/19 10:42	7440-42-8	
Calcium	146000	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 10:42	7440-70-2	
Iron	73.7	ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 10:42	7439-89-6	
Magnesium	28800	ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 10:42	7439-95-4	
Manganese	3000	ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 10:42	7439-96-5	
Potassium	6110	ug/L	500	79.0	1	11/12/19 17:15	11/13/19 10:42	7440-09-7	
Sodium	8770	ug/L	500	144	1	11/12/19 17:15	11/13/19 10:42	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	479	mg/L	20.0	6.5	1		11/12/19 12:51		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	540	mg/L	10.0	10.0	1		11/11/19 13:20		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	22.5	mg/L	10.0	2.2	10		11/15/19 17:08	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/15/19 16:51	16984-48-8	
Sulfate	18.1	mg/L	1.0	0.23	1		11/15/19 16:51	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Sample: L-LCL1-DUP-1	Lab ID:	60320422005	Collected:	11/05/19	08:00	Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepara	ation Meth	od: EP/	A 200.7			
Boron	93.5J	ug/L	100	10.7	1	11/12/19 17:15	11/13/19 11:30	7440-42-8	
Calcium	178000	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 11:30	7440-70-2	
Iron	2230	ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 11:30	7439-89-6	
Magnesium	41500	ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 11:30	7439-95-4	
Manganese	2500	ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 11:30	7439-96-5	
Potassium	6450	ug/L	500	79.0	1	11/12/19 17:15	11/13/19 11:30	7440-09-7	
Sodium	9810	ug/L	500	144	1	11/12/19 17:15	11/13/19 11:30	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	579	mg/L	20.0	6.5	1		11/12/19 13:09		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	676	mg/L	10.0	10.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	4.9	mg/L	1.0	0.22	1		11/15/19 17:24	16887-00-6	
Fluoride	0.12J	mg/L	0.20	0.085	1		11/15/19 17:24	16984-48-8	
Sulfate	84.3	ma/L	10.0	2.3	10		11/15/19 17:41	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Sample: L-LCL1-FB-1	Lab ID:	60320422006	Collected:	: 11/05/19 14:56		Received: 11/	07/19 09:02 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepara	ation Meth	nod: EP/	A 200.7			
Boron	<10.7	ug/L	100	10.7	1	11/12/19 17:15	11/13/19 10:27	7440-42-8	
Calcium	<50.0	ug/L	200	50.0	1	11/12/19 17:15	11/13/19 10:27	7440-70-2	
Iron	<14.0	ug/L	50.0	14.0	1	11/12/19 17:15	11/13/19 10:27	7439-89-6	
Magnesium	<13.0	ug/L	50.0	13.0	1	11/12/19 17:15	11/13/19 10:27	7439-95-4	
Manganese	<2.1	ug/L	5.0	2.1	1	11/12/19 17:15	11/13/19 10:27	7439-96-5	
Potassium	<79.0	ug/L	500	79.0	1	11/12/19 17:15	11/13/19 10:27	7440-09-7	
Sodium	<144	ug/L	500	144	1	11/12/19 17:15	11/13/19 10:27	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	<6.5	mg/L	20.0	6.5	1		11/12/19 13:12		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	5.0	mg/L	5.0	5.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	<0.22	mg/L	1.0	0.22	1		11/15/19 18:31	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/15/19 18:31	16984-48-8	
Sulfate	<0.23	mg/L	1.0	0.23	1		11/15/19 18:31	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Sample: L-BMW-1S	Lab ID:	60320429007	Collecte	d: 11/05/19	0 10:45	Received: 11/	/07/19 03:50 Ma	atrix: Water	
Parameters	Results	Units	PQL MDL DF		DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
Boron	122	ug/L	100	10.7	1	11/13/19 14:22	11/14/19 15:25	7440-42-8	
Calcium	194000	ug/L	200	50.0	1	11/13/19 14:22	11/14/19 15:25	7440-70-2	
Iron	32000	ug/L	50.0	14.0	1	11/13/19 14:22	11/14/19 15:25	7439-89-6	
Magnesium	43400	ug/L	50.0	13.0	1	11/13/19 14:22	11/14/19 15:25	7439-95-4	
Manganese	2570	ug/L	5.0	2.1	1	11/13/19 14:22	11/14/19 15:25	7439-96-5	
Potassium	5880	ug/L	500	79.0	1	11/13/19 14:22	11/14/19 15:25	7440-09-7	
Sodium	19600	ug/L	500	144	1	11/13/19 14:22	11/14/19 15:25	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
Alkalinity, Total as CaCO3	671	mg/L	20.0	6.5	1		11/12/19 14:01		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
Total Dissolved Solids	700	mg/L	10.0	10.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	4.8	mg/L	1.0	0.22	1		11/16/19 01:59	16887-00-6	
Fluoride	<0.085	mg/L	0.20	0.085	1		11/16/19 01:59	16984-48-8	
Sulfate	29.9	mg/L	5.0	1.2	5		11/16/19 02:16	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Proj

pject No.:	60320422	

Sample: L-BMW-2S	Lab ID:	Lab ID: 60320429008			13:25	Received: 11/	atrix: Water		
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP/	A 200.7			
Boron	61.2J	ug/L	100	10.7	1	11/13/19 14:22	11/14/19 15:27	7440-42-8	
Calcium	125000	ug/L	200	50.0	1	11/13/19 14:22	11/14/19 15:27	7440-70-2	
Iron	22.1J	ug/L	50.0	14.0	1	11/13/19 14:22	11/14/19 15:27	7439-89-6	
Magnesium	18700	ug/L	50.0	13.0	1	11/13/19 14:22	11/14/19 15:27	7439-95-4	
Manganese	<2.1	ug/L	5.0	2.1	1	11/13/19 14:22	11/14/19 15:27	7439-96-5	
Potassium	7240	ug/L	500	79.0	1	11/13/19 14:22	11/14/19 15:27	7440-09-7	
Sodium	8560	ug/L	500	144	1	11/13/19 14:22	11/14/19 15:27	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
Alkalinity, Total as CaCO3	371	mg/L	20.0	6.5	1		11/12/19 14:17		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
Total Dissolved Solids	425	mg/L	5.0	5.0	1		11/11/19 13:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	00.0						
Chloride	3.3	mg/L	1.0	0.22	1		11/18/19 13:20	16887-00-6	
Fluoride	0.12J	mg/L	0.20	0.085	1		11/18/19 13:20	16984-48-8	
Sulfate	28.5	mg/L	5.0	1.2	5		11/18/19 13:36	14808-79-8	

Project: AMEREN LABADIE ENERGY CTR LCL1

EPA 200.7

Pace Project No.: 60320422

Associated Lab Samples:

QC Batch Method:

QC Batch: 621917

Analysis Method:

Analysis Description: 200.7 Metals, Total

EPA 200.7

60320422001, 60320422002, 60320422003, 60320422004, 60320422005, 60320422006

METHOD BLANK: 2535914

Matrix: Water

Associated Lab Samples: 60320422001, 60320422002, 60320422003, 60320422004, 60320422005, 60320422006

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<10.7	100	10.7	11/13/19 10:24	
Calcium	ug/L	<50.0	200	50.0	11/13/19 10:24	
Iron	ug/L	<14.0	50.0	14.0	11/13/19 10:24	
Magnesium	ug/L	<13.0	50.0	13.0	11/13/19 10:24	
Manganese	ug/L	<2.1	5.0	2.1	11/13/19 10:24	
Potassium	ug/L	<79.0	500	79.0	11/13/19 10:24	
Sodium	ug/L	<144	500	144	11/13/19 10:24	

LABORATORY CONTROL SAMPLE: 2535915

Parameter	Linits	Spike Conc	LCS Result	LCS % Rec	% Rec	Qualifiers
	Units			701100		Qualifiero
Boron	ug/L	1000	927	93	85-115	
Calcium	ug/L	10000	9580	96	85-115	
Iron	ug/L	10000	9510	95	85-115	
Magnesium	ug/L	10000	9490	95	85-115	
Manganese	ug/L	1000	931	93	85-115	
Potassium	ug/L	10000	9370	94	85-115	
Sodium	ug/L	10000	9650	96	85-115	

MATRIX SPIKE & MATRIX SPI	KE DUPI	_ICATE: 2535		2535917								
			MS	MSD								
		60320422001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L		1000	1000	1080	1080	98	97	70-130	1	20	
Calcium	ug/L	174000	10000	10000	179000	181000	52	71	70-130	1	20	M1
Iron	ug/L	360	10000	10000	10100	10100	98	98	70-130	0	20	
Magnesium	ug/L	45600	10000	10000	54300	54700	87	91	70-130	1	20	
Manganese	ug/L	4900	1000	1000	5650	5770	76	88	70-130	2	20	
Potassium	ug/L	5760	10000	10000	15600	15600	98	98	70-130	0	20	
Sodium	ug/L	11800	10000	10000	21500	21700	97	99	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

CC 1 10jCCI 100... 0002042

QC Batch:	622126	Analysis Method:	EPA 200.7
QC Batch Method:	EPA 200.7	Analysis Description:	200.7 Metals, Total
Associated Lab Sam	ples: 60320429007, 60320429008		

METHOD BLANK: 2536680

Associated Lab Samples: 60320429007, 60320429008

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<10.7	100	10.7	11/14/19 14:40	
Calcium	ug/L	<50.0	200	50.0	11/14/19 14:40	
Iron	ug/L	<14.0	50.0	14.0	11/14/19 14:40	
Magnesium	ug/L	<13.0	50.0	13.0	11/14/19 14:40	
Manganese	ug/L	<2.1	5.0	2.1	11/14/19 14:40	
Potassium	ug/L	169J	500	79.0	11/14/19 14:40	
Sodium	ug/L	<144	500	144	11/14/19 14:40	

Matrix: Water

LABORATORY CONTROL SAMPLE: 2536681

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	980	98	85-115	
Calcium	ug/L	10000	10300	103	85-115	
Iron	ug/L	10000	10100	101	85-115	
Magnesium	ug/L	10000	10200	102	85-115	
Manganese	ug/L	1000	991	99	85-115	
Potassium	ug/L	10000	10200	102	85-115	
Sodium	ug/L	10000	10400	104	85-115	

MATRIX SPIKE & MATRIX SPI	KE DUPI	LICATE: 2536	682		2536683							
			MS	MSD								
		60320429001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	8730	1000	1000	9720	9870	100	115	70-130	2	20	
Calcium	ug/L	136000	10000	10000	145000	147000	88	115	70-130	2	20	
Iron	ug/L	5360	10000	10000	15200	15500	98	101	70-130	2	20	
Magnesium	ug/L	24700	10000	10000	34200	34700	95	100	70-130	2	20	
Manganese	ug/L	1360	1000	1000	2360	2390	100	103	70-130	2	20	
Potassium	ug/L	7540	10000	10000	17200	17500	97	100	70-130	2	20	
Sodium	ug/L	81900	10000	10000	92500	94800	106	129	70-130	2	20	

MATRIX SPIKE SAMPLE:	2536684						
		60320429006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	7750	1000	8780	103	70-130	
Calcium	ug/L	212000	10000	222000	97	70-130	
Iron	ug/L	18000	10000	28000	101	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

2536684						
	60320429006	Spike	MS	MS	% Rec	
Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
ug/L	37100	10000	47200	101	70-130	
ug/L	2850	1000	3840	99	70-130	
ug/L	8570	10000	18700	101	70-130	
ug/L	106000	10000	116000	101	70-130	
	2536684 	2536684 - Units - ug/L ug/L ug/L ug/L ug/L ug/L 0320429006 Result 37100 2850 ug/L 8570 ug/L 106000	2536684 60320429006 Spike Units Result Conc. ug/L 37100 10000 ug/L 2850 1000 ug/L 8570 10000 ug/L 106000 10000	2536684 60320429006 Spike MS Units Result Conc. Result	2536684 60320429006 Spike MS MS Units Result Conc. Result % Rec 100 ug/L 37100 10000 47200 101 101 ug/L 2850 1000 3840 99 101 ug/L 8570 10000 18700 101 ug/L 106000 10000 116000 101	2536684 60320429006 Spike MS MS % Rec Units Result Conc. Result % Rec Limits ug/L 37100 10000 47200 101 70-130 ug/L 2850 1000 3840 99 70-130 ug/L 8570 10000 18700 101 70-130 ug/L 106000 10000 116000 101 70-130

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMER	EN LABADI	IE ENERGY CTR L	_CL1							
Pace Project No .:	603204	122									
QC Batch:	6218	23		Analysis M	ethod:	SM 2320B					
QC Batch Method:	SM 2	320B		Analysis D	escription:	2320B Alka	alinity				
Associated Lab San	nples:	60320422 60320429	2001, 60320422002 1008	2, 60320422003,	60320422004	4, 603204220	005, 603	820422006,	60320	429007,	
METHOD BLANK:	253559	96		Matri	x: Water						
Associated Lab San	nples:	60320422 60320429	2001, 60320422002 0008	2, 60320422003,	60320422004	4, 603204220	005, 603	320422006,	60320	429007,	
_				Blank	Reporting)					
Paran	neter		Units	Result	Limit	MD)L	Analyz	ed	Qualifiers	
Alkalinity, Total as C	aCO3		mg/L	<6.5	5 2	0.0	6.5	11/12/19	11:56		
LABORATORY COM	NTROL	SAMPLE:	2535597								
Paran	neter		Units	Spike Conc.	LCS Result	LCS % Rec	9	% Rec Limits	Qua	alifiers	
Alkalinity, Total as C	aCO3		mg/L	500	499	1(00	90-110			
SAMPLE DUPLICA	TE: 25	35600									
_				60320422001	Dup		_	Max			
Paran	neter		Units	Result	Result	RP	D	RPD		Qualifiers	
Alkalinity, Total as C	aCO3		mg/L	535	5 5	531	1		10		
SAMPLE DUPLICA	TE: 25	35601									
Paran	neter		Linits	60320429001 Result	Dup Result	RÞ	П	Max RPD		Qualifiers	
									10	Guainers	
Aikalinity, Total as C	ac03		mg/∟	37		583	2		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMER	EN LABADI	E ENERGY CTR	LCL1							
Pace Project No.:	603204	422									
QC Batch:	6215	44		Analysis M	ethod:	SM 2540C					
QC Batch Method:	SM 2	540C		Analysis De	escription:	2540C Tota	l Dissol	ved Solids			
Associated Lab Sar	mples:	60320422 60320429	001, 60320422002 008	2, 60320422003,	60320422004	4, 603204220	05, 603	20422006,	60320	9429007,	
METHOD BLANK:	25349 ⁻	10		Matrix	x: Water						
Associated Lab Sar	mples:	60320422 60320429	001, 60320422002 008	2, 60320422003,	60320422004	4, 603204220	05, 603	20422006,	60320	9429007,	
_				Blank	Reporting)					
Parar	neter		Units	Result	Limit	MD	L	Analyz	zed	Qualifiers	
Total Dissolved Soli	ids		mg/L	<5.0)	5.0	5.0	11/11/19	13:18		
LABORATORY CO	NTROL	SAMPLE:	2534911 Units	Spike Conc.	LCS Result	LCS % Rec	% L	6 Rec ∟imits	Qua	alifiers	
Total Dissolved Soli	ids		mg/L	1000	1010	10	1	80-120			
SAMPLE DUPLICA	TE: 25	34912									
Parar	neter		Units	60320422001 Result	Dup Result	RPI)	Max RPD		Qualifiers	
Total Dissolved Soli	ids		mg/L	673	3 6	591	3		10		
SAMPLE DUPLICA	TE: 25	34913									
Parar	neter		Units	60320429001 Result	Dup Result	RPI	5	Max RPD		Qualifiers	
Total Dissolved Soli	ds		mg/L	804	μ 4 ε	344	5		10		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	AMEREN LABADI	E ENERGY CTR	LCL1									
Pace Project No.:	60320422											
QC Batch:	622423		Analy	sis Metho	d:	EPA 300.0						
QC Batch Method:	EPA 300.0		Analy	sis Descri	ption:	300.0 IC Ar	ions					
Associated Lab Sar	nples: 603204220	001, 6032042200	2, 6032042	2003, 603	20422004	l, 603204220	05, 6032	0422006, 6	0320429007	•		
METHOD BLANK:	2537721			Matrix: W	ater							
Associated Lab Sar	nples: 603204220	001, 6032042200	2, 6032042	2003, 603	20422004	l, 603204220	05, 6032	0422006, 6	0320429007			
_			Blan	ik	Reporting							
Paran	neter	Units	Resu	ult	Limit	MD	L	Analyze	d Qi	alifiers		
Chloride		mg/L		<0.22		1.0	0.22	11/15/19 12	2:43			
Fluoride		mg/L	<	<0.085	0	.20	0.085	11/15/19 12	2:43			
Sulfate		mg/L		<0.23		1.0	0.23	11/15/19 12	2:43			
METHOD BLANK:	2539925			Matrix: W	ater							
Associated Lab Sar	nples: 603204220	001, 6032042200	2, 6032042	2003, 603	20422004	, 603204220	05, 6032	0422006, 6	0320429007	,		
			Blan	ık	Reporting							
Parar	neter	Units	Resu	ult	Limit	MD	L	Analyze	d Qu	alifiers		
Chloride		mg/L		<0.22		1.0	0.22	11/16/19 12	2:00			
Fluoride		mg/L	<	<0.085	0	.20	0.085	11/16/19 12	2:00			
Sulfate		mg/L		0.27J		1.0	0.23	11/16/19 12	2:00			
LABORATORY COI	NTROL SAMPLE:	2537722										
Parar	neter	Units	Spike Conc.	LC Res	S Sult	LCS % Rec	% Lii	Rec mits	Qualifiers			
Chloride		ma/l		5		9	 6	90-110		_		
Fluoride		mg/L	2.	5	2.7	10	0 7	90-110				
Sulfate		mg/L		5	5.3	10	7	90-110				
		2530026										
	TROE SAMELE.	2009920	Spike	LC	s	LCS	%	Rec				
Paran	neter	Units	Conc.	Res	sult	% Rec	Li	mits	Qualifiers			
Chloride		ma/L		 5	4.6	9	2	90-110		_		
Fluoride		mg/L	2.	5	2.6	10	4	90-110				
Sulfate		mg/L	:	5	5.4	10	8	90-110				
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 2537	723		253772	24						
		2001	MS	MSD								
		60320422001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	4.4	5	5	9.3	3 9.4	9	9 8	9 80-120	1	15	
Fluoride	mg/L	0.15J	2.5	2.5	3.1	1 3.2	11	8 12	1 80-120	2	15	M1
Sulfate	mg/L	109	50	50	16	1 160	10	03 10	2 80-120	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2537	725		2537726							
			MS	MSD								
		60320429001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	25.2	10	10	36.1	36.0	109	108	80-120	0	15	
Fluoride	mg/L	0.17J	2.5	2.5	3.1	3.2	116	120	80-120	3	15	
Sulfate	mg/L	261	100	100	362	373	101	113	80-120	3	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN LABAD Pace Project No.: 60320422	IE ENERGY CTR	LCL1						
QC Batch: 622840		Analysis M	ethod:	EPA 3	300.0			
QC Batch Method: EPA 300.0		Analysis D	escription:	300.0	IC Anions			
Associated Lab Samples: 60320429	9008							
METHOD BLANK: 2540041		Matri	x: Water					
Associated Lab Samples: 60320429	9008							
		Blank	Reportir	ng				
Parameter	Units	Result	Limit		MDL	Analy	zed	Qualifiers
Chloride	mg/L	<0.22	2	1.0	0.2	2 11/18/19	08:21	
Fluoride	mg/L	<0.08	5	0.20	0.08	85 11/18/19	08:21	
Sulfate	mg/L	<0.23	3	1.0	0.2	23 11/18/19	08:21	
		Motri	v: Motor					
Approximated Lab Samplas: 0000040	2008	wath	A. Water					
Associated Lab Samples: 60320429	3008	Dia	Decent	~				
Parameter	Units	Blank Result	Reportir Limit	ng	MDL	Analy	zed	Qualifiers
Chloride	mg/L	<0.22	2	1.0	0.2	2 11/19/19	07:40	
Fluoride	mg/L	<0.08	5	0.20	0.08	5 11/19/19	07:40	
Sulfate	mg/L	0.30	J	1.0	0.2	23 11/19/19	07:40	
METHOD BLANK: 2543009		Matri	x [.] Water					
Associated Lab Samples: 60320420	2008	Math	A. Water					
	008	Blank	Peportir	na l				
Parameter	Units	Result	Limit		MDL	Analy	zed	Qualifiers
Chloride	mg/L	0.45	J	1.0	0.2	2 11/20/19	09:10	
Fluoride	mg/L	<0.08	5	0.20	0.08	11/20/19	09:10	
Sulfate	mg/L	<0.23	3	1.0	0.2	23 11/20/19	09:10	
LABORATORY CONTROL SAMPLE:	2540042							
		Spike	LCS	LC	S	% Rec		
Parameter	Units	Conc.	Result	% F	Rec	Limits	Qualif	iers
Chloride	ma/L	5	4.8		96	90-110		
Fluoride	mg/L	2.5	2.6		106	90-110		
Sulfate	mg/L	5	5.3		107	90-110		
LABORATORY CONTROL SAMPLE:	2541250							
	-	Spike	LCS	LC	S	% Rec		
Parameter	Units	Conc.	Result	% R	Rec	Limits	Qualif	iers
Chloride	mg/L	5	5.0		100	90-110		
Fluoride	mg/L	2.5	2.6		102	90-110		
Out to the	ma/l	5	5.0		101	90-110		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

LABORATORY CONTROL SAMPLE:	2543010					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.9	98	90-110	
Fluoride	mg/L	2.5	2.6	102	90-110	
Sulfate	mg/L	5	5.1	101	90-110	

MATRIX SPIKE & MATRIX SPI	KE DUPI	_ICATE: 2540	043		2540044							
			MS	MSD								
		60320174002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	10.9	50	50	58.8	56.0	96	90	80-120	5	15	H3
Fluoride	mg/L	1.1J	25	25	30.5	28.6	118	110	80-120	6	15	H3
Sulfate	mg/L	229	250	250	485	479	103	100	80-120	1	15	HЗ

MATRIX SPIKE SAMPLE:	2540045						
		60321269006	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	906	250	1150	99	80-120 E	
Fluoride	mg/L	31.1	125	168	109	80-120	
Sulfate	mg/L	72.9	250	336	105	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- H3 Sample was received or analysis requested beyond the recognized method holding time.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN LABADIE ENERGY CTR LCL1

Pace Project No.: 60320422

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60320422001	L-TMW-1	EPA 200.7	621917	EPA 200.7	621979
60320422002	L-TMW-2	EPA 200.7	621917	EPA 200.7	621979
60320422003	L-TMW-3	EPA 200.7	621917	EPA 200.7	621979
60320422004	L-TMW-26	EPA 200.7	621917	EPA 200.7	621979
60320422005	L-LCL1-DUP-1	EPA 200.7	621917	EPA 200.7	621979
60320422006	L-LCL1-FB-1	EPA 200.7	621917	EPA 200.7	621979
60320429007	L-BMW-1S	EPA 200.7	622126	EPA 200.7	622187
60320429008	L-BMW-2S	EPA 200.7	622126	EPA 200.7	622187
60320422001	L-TMW-1	SM 2320B	621823		
60320422002	L-TMW-2	SM 2320B	621823		
60320422003	L-TMW-3	SM 2320B	621823		
60320422004	L-TMW-26	SM 2320B	621823		
60320422005	L-LCL1-DUP-1	SM 2320B	621823		
60320422006	L-LCL1-FB-1	SM 2320B	621823		
60320429007	L-BMW-1S	SM 2320B	621823		
60320429008	L-BMW-2S	SM 2320B	621823		
60320422001	L-TMW-1	SM 2540C	621544		
60320422002	L-TMW-2	SM 2540C	621544		
60320422003	L-TMW-3	SM 2540C	621544		
60320422004	L-TMW-26	SM 2540C	621544		
60320422005	L-LCL1-DUP-1	SM 2540C	621544		
60320422006	L-LCL1-FB-1	SM 2540C	621544		
60320429007	L-BMW-1S	SM 2540C	621544		
60320429008	L-BMW-2S	SM 2540C	621544		
60320422001	L-TMW-1	EPA 300.0	622423		
60320422002	L-TMW-2	EPA 300.0	622423		
60320422003	L-TMW-3	EPA 300.0	622423		
60320422004	L-TMW-26	EPA 300.0	622423		
60320422005	L-LCL1-DUP-1	EPA 300.0	622423		
60320422006	L-LCL1-FB-1	EPA 300.0	622423		
60320429007	L-BMW-1S	EPA 300.0	622423		
60320429008	L-BMW-2S	EPA 300.0	622840		

REPORT OF LABORATORY ANALYSIS

Pace Analytical Sample Condition U	pon Receipt	WO#:60320422
Client Name: Courier: FedEx UPS VIA Clay P Tracking #: Custody Seal on Cooler/Box Present: Yes No Packing Material: Bubble Wrap Bubble Bags Thermometer Used: Type of Type of	PEX D ECI D e Shipping Label Use Seals intact: Yes Foam D	Pace Xroads Client Other Client No Client Other No Client No Client No Client None Other 2710
Cooler Temperature (°C): As-read 0.1,0.5 Corr. Factor Temperature should be above freezing to 6°C	$\frac{1000}{100}$ Correc	ted $0.10.5$ Date and initials of person examining contents: VB $11/7/19$
Chain of Custody present:	ØYes □No □N/A	
Chain of Custody relinquished:	Ves 🗆 No 🗇 N/A	
Samples arrived within holding time:	Yes No N/A	
Short Hold Time analyses (<72hr):	□Yes ØNo □N/A	
Rush Turn Around Time requested:		
Sufficient volume:		
Correct containers used:	Yes DNo DN/A	
Pace containers used:	/ Ves 🗆 No 🗆 N/A	
Containers intact:		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □M/A	
Filtered volume received for dissolved tests?		
Sample labels match COC: Date / time / ID / analyses		
Samples contain multiple phases? Matrix: M +		
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cvanide water sample checks:		List sample IDs, volumes, lot #'s of preservative and the date/time added.
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	UYes INO UNIA	
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field?		
Client Notification/ Resolution: Copy COC to	Client? Y / N	Field Data Required? Y / N
Person Contacted: Date/Ti Comments/ Resolution:	me:	
Project Manager Review:	Dat	e:

5	Pace Analytical	www.pacetabs.com
-	()	1

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

Section A Required Cliv	ent Information:	Section B Required Project Inform	lation:			Secti Invoice	on C 3 Informat	tion:								Page:	-	đ	4
Company:	Golder Associates	Report To: Jeffrey Inc	gram			Attent	on:												
Address:	13515 Barrett Parkway Dr., Ste 260	Сору То:				Comp	any Name	ini					REGUL	ATORY	AGENC		4		
	Bałłwin, MO 63021					Addre	SS:						dN L	DES	GROU	ND WATE	L	DRINKING	WATER
Email To:	jeffrey ingram@golder.com	Purchase Order No.:				Pace (Refere	Nuote 1ce:						SU		- RCRA		L	OTHER	
Phone: 63.	6-724-9191 Fax 636-724-9323	Project Name: Ame.	ren Labadie I	Energy Cent	er LCL1	Pace F Manao	roject sr.	Jamie C	hurch				Site Lo	cation					
Requested I	Due Date/TAT: Standard	Project Number:				Pace	rofile #:	9285					S	TATE:					
											Requ	ested /	Analysi	Filtere	(N/A) P				
Ser	tion D Valid Matrix C Valid Matrix C MATRIX C	Codes Codes		OLLECTED				reserva	tives	1 N /A	Z	z z							
	DERNANG WATER WASTE WASTE WASTE PRODUCT SULSOUD	문 문 중 또 약 2 e valid codes to	COMPOSITE START	END	VGRAB	NOU OF				t	etetlu2\					(N/A)			
	SAMPLE ID (A-Z, 0-9 / -) Sample IDS MUST BE UNIQUE	, CODE (3e					pərnəs		jou °C	ysis Test	se/Fluoride	ity				aal Chlorine	003	enore	4
# MƏTI		KIATAM BJ9MA2	DATE	IME DATE	TIME	# OL C	⁷ OS ^z H	N ⁹ OH HCI HNO ³	Methan Methan	IsnA4	Netals Chloric	Alkalin Alkalin				лbisəЯ	Pace	Project N	o./ Lab I.D.
	I -TMW-1	LA LA		MKI	19 1520	3	-				=	-	-						100
. 6	L-TMW-2	0 L			2421	-		-			11	11							2002
8	L-TMW-3	WT G		-7	HHH														203
4	L-MW-26	WT G		N/6/1	9 1249					5									had
S	L-Utter-pup-1	WT G	-	1/S/V	1 5	_			_			-							00)
9	L-UNEFB-1	MT G	-	-1	1456	_													006
7	SW-1-mul-7	WT G	-	1115/	1620	_					_	_							B
80	C-TMW-1-MSD	WT G	-	-	-1	-	-+	1			1	-		_					100
σ		WT G				_				-									
10		MI C							-		_	-							
12		WT G								T	_	-			-				
	ADDITIONAL COMMENTS	RELINQUI	SHED BY / AFF	ILLATION	DATE		IME		ACCEPT	ED BY /	AFFILIA	NOLL		ATE	TIME		SAMI	LE CONDIT	SNO
*EPA 200 7:	: B, Ca, Fe, Mn, Mg, K, Na	lul	21156	K	11/10/12	t i	45	Va	te	KI.		Pac	The a	61/2	0350	1.0	X	7:7	7-3
						_							-			5	>	•	F
Pa													-						
age 2			SA	WPLER NAM	E AND SIGNAT	TURE		+								э.	no t	V/V) esled) julaci
25 o			<u> </u>	PRINT N	ame of SAMPLI	ER:	122	rede								ui dui	peviec IVY) e:	oqy S	N/Y)
f 27				SIGNAT	URE of SAMPL	CR:	h	2			DATE: (MM/D	Signed D/YY):	11/6	67		e⊥	юЯ И	tsu) o)	nsS

F-ALL-Q-020rev 08, 12-Oct-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

	MC)#:60320741
Pace Analytical Sample Condition U	oon Receipt	0741
Client Name: <u>Golder Associate</u>	7	/
Courier: FedEx UPS VIA Clay F	EX 🗆 ECI 🗆 Pace 🗆 Xro	ads 🖉 Client 🗆 Other 🗆
Tracking #: Pace	Shipping Label Used? Yes A N	
Custody Seal on Cooler/Box Present: Yes / No	Seals intact: Yes/L No L	atter #2 DIC
Thermometer Used: <u>1298</u> Type of	Ce Wet Blue None	
Cooler Temperature (°C): As-read O. Corr. Factor	r_ <u>+0.0</u> Corrected _ <u>0.1</u>	examining contents: WS 11/9/19
Chain of Custody present:	ØYes □No □N/A	
Chain of Custody relinquished:	Vies INO IN/A	
Samples arrived within holding time:	ØYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A	
Rush Turn Around Time requested:		
Sufficient volume:	ZYes DNo DN/A	
Correct containers used:	ØYes □No □N/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	ØYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No □N/A	
Filtered volume received for dissolved tests?		
Sample labels match COC: Date / time / ID / analyses	Yes No N/A	
Samples contain multiple phases? Matrix: W +		
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks:	Yes □No □N/A List sample IDs date/time added	, volumes, lot #'s of preservative and the d.
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:		
Headspace in VOA vials (>6mm):		
Samples from USDA Regulated Area: State:		
Additional labels attached to 5035A / TX1005 vials in the field? Client Notification/ Resolution: Copy COC to	□Yes □No □N/A Client? Y / N Field Data R	Required? Y / N
Person Contacted: Date/Ti Comments/ Resolution:	ne:	
Project Manager Review:	11/10/19 Date:	

F-KS-C-003-Rev.11, February 28, 2018 Page 26 of 27

1	1	S
		0
	D	1
	SC	\smile
	(D)	
WHY:	P	
V. Da	a	
Cela	3	
bs o	S	
ELOC	ف	
	1.0	

CHAIN-OF-CUSTODY / Analytical Request Document

			"EPA 200.7: B, Ca		12	11	10	9	00	7	6	Ch	4	w	2	-	Samp	Required C		Requested Due Da	Phone: 636-724	Email To: jeff	Ba	Address: 135	Company: Go	Section A Required Client Info
			, Fe, Mn, Mg, K, Na	ADDITIONAL COMMENTS	L-LMW-FB-1	L-LMW-DUP-1	L-BMW-2S	L-BMW-1S	L-LMW-8S	L-LMW-7S	L-LMW-6S	L-LMW-5S	L-LMW-4S	L-LMW-3S	L-LMW-2S	L-LMW-1S	WATER WASTEN SAMPLE ID (A-Z, 0-9 /,-) Ie IDS MUST BE UNIQUE	Dient Information MATRIX DrivkIngv		te/TAT: Standard	1-9191 Fax: 636-724-9323	frey ingram@golder.com	llwin, MO 63021	515 Barrett Parkway Dr., Ste 2	Ider Associates	ormation:
		CMU	Annie	REL	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	WT	고 의 유 및 의 의 가 NTER 것 의 유 및 의 의 가 W 대 MATRIX CODE (see valid code	vater DW s to left)		Project Number:	Project Name:	Purchase Order I		60 Copy To:	Report To: Jeffi	Section B Required Project
		eram	Muehttarth /	INQUISHED BY / A	G	G	G	ດ	G	G	G	G	G	G	G	G	SAMPLE TYPE (G=GRAB C=C STATE	COMP)			Ameren Labad	No :			rey Ingram	t Information:
PRINT Ná SIGNATU	SAMPLER NAME		1 Colder	AFFILIATION	<										 	11-7-19	TIME DATE	COLLECTED			lie Energy Cente					
ame of SAMPLER:	AND SIGNATUR	i(X	11/8/11	DATE											1139	atri J	SAMPLE TEMP AT COLLECTION	N	-		3r LCPB		~			
Annie M		16.25	1626 6	TIME											2 1 1	2 1 1	# OF CONTAINERS Unpreserved H ₂ SO ₄ HNO ₃	Pres		Pace Profile #: 928	Pace Project Jan Manager.	Pace Quote Reference:	Address:	Company Name:	Attention:	Section C nvoice Information:
whiterth		JALS	morche	ACCEPTE													HCI NaOH Na ₂ S ₂ O ₃ Methanol Other	servatives		Ű	nie Church					
DATE Signed (MM/DD/YY):		20-lla	Mana	D BY / AFFILIATION											2 2 2	۲ ۲ ۲	↓Analysis Test↓ Metals* Chloride/Fluoride/Sulfate TDS Alkalinity	Y/N Z Z Z Z	Requested							
1-7-19		LI/L/IN 20	THE SE	DATE															Analysis Filtere	STATE:	Site Location	L NST	I NPDES	REGULATORY		N.
Temp in	n°C	(1) C220	IL: DX	TIME															d (Y/N)	NO	MO	RCRA	GROUND W/	AGENCY		Pag
Received Ice (Y/ Custody S Cooler ()	d on N) Gealed Y/N)	4		SAMPLE CONE											00	0	Pace Project					[OTHER	ATER DRINKI			ye: 1 of
Samples (Y/N	Intact)	-4		DITIONS											いよ	0	thoy Lab I.D.						ING WATER	1		→ Pag

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.08, 12-Oct-2007

MEMORANDUM

Project No. 153140601

DATE January 23, 2020

TO Project File Golder Associates

- **CC** Amanda Derhake, Jeff Ingram
- **FROM** Tommy Goodwin

EMAIL Tommy_Goodwin@golder.com

DATA VALIDATION SUMMARY, LABADIE ENERGY CENTER – LCL1 – VERIFICATION SAMPLING - DATA PACKAGE 60320422REV1

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a sample result between the MDL and the PQL the results were recorded at the detection value and qualified as estimates (J).
- When MS/MSD recovery exceeded the QC limits, the associated sample result was qualified as an estimate (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Golder Associates		Proj	ect Manag	er: J Ingram
Project	Name: Ameren - Labadie - LCL1 - DM		Proj	ect Numbe	r: 1531406
Review	er: T Goodwin		Vali	dation Date	1/23/2020
Laborat	ory: Pace Analytical - KS		SDC	G #: 603204	22rev1
Analytic	cal Method (type and no.): EPA 200.7 (Metals); SM232	0B (Alka	linity); SM	2540C (Tota	l Dissolved Solids); EPA 300.0 (Anions)
Matrix:	Air Soil/Sed. Water Waste				
Sample	Names L-TMW-1, L-TMW-2, L-TMW-3, L-TMW-26, L-LCL	.1-DUP-	1, L-LCL1-	-FB-1, L-BM	W-1S, L-BMW-2S
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bac	ck please indicate in comment areas).
Field In	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	×			11/5-11/6/2019
b)	Sampling team indicated?	×			
c)	Sample location noted?	×			
d)	Sample depth indicated (Soils)?			×	
e)	Sample type indicated (grab)composite)?	×			
f)	Field QC noted?	×			
g)	Field parameters collected (note types)?	×			pH, Sp.Cond, ORP, Temp, DO, Turb
h)	Field Calibration within control limits?	×			
i)	Notations of unacceptable field conditions/performa	inces fro	om field l	ogs or field	notes?
			×		
j)	Does the laboratory narrative indicate deficiencies?			x	
	Note Deficiencies:				
					· · · · · · · · · · · · · · · · · · ·
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS
a)	Was the COC properly completed?	×			
b)	Was the COC signed by both field		_	_	
	and laboratory personnel?	×			
c)	Were samples received in good condition?	×			
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?				
u) h)	Were hold times met for sample analysis?				
c)	Were the correct preservatives used?				
d)	Was the correct method used?				
(ت ام	Were appropriate reporting limits achieved?				
f)	Were any sample dilutions noted?				See Notes
a)	Were any matrix problems noted?				
3/					

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	×			See Notes
b)	Were analytes detected in the field blank(s)?	×			See Notes
c)	Were analytes detected in the equipment blank(s)?			×	
d)	Were analytes detected in the trip blank(s)?			×	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	x			
b)	Were the proper analytes included in the LCS?	×			
c)	Was the LCS accuracy criteria met?	×			
Duplica	ates	YES	NO	NA	
a)	Were field duplicates collected (note original and du	plicate	sample na	ames)?	DUP-1 @ L-TMW-2
		×			FB-1@L-IMW-3
b)	Were field dup. precision criteria met (note RPD)?	x			See Notes
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?		
		×			-22001 (Alk, TDS); -29001 (Alk, TDS)
d)	Were lab dup. precision criteria met (note RPD)?	×			See Notes
Blind S	itandards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,		×		
	analytes included and concentrations)?				
b)	Was the %D within control limits?			×	
Motrix	Spika/Matrix Spika Duplicate /MS/MSD)	VEC	NO	NA	COMMENTS
WIGUIX	Was MS accuracy criteria mot?				See Notes
a)	Passivery actually chiena met?		Ĺ		
	contained high concentration of analyte?			×	
b)	Was MSD accuracy criteria met?		×		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			x	
c)	Were MS/MSD precision criteria met?	×			

Comments/Notes:

MS/MSD: -22001: Ca_MS-L (52%), F_MSD-H (121%)	
MB: -22001-06, -29007: SO4 (0.27);	Reference and an and
-29007-08: K (169); -29008: SO4 (0.30) and Cl (0.45)	
FB: TDS (5.0)	
Max Field Duplicate RPD: 8% (Limit: 20%)	
Max Lab Duplicate RPD: 5% (Limit: 10%)	
Dilution: Chloride and Sulfate diluted in several samples; no qualification is necessary.	

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
L-TMW-1	Calcium (Ca)	174000	J	MS/MSD Exceeded Calibration Range
**	Fluoride (F)	0.15	J	MS/MSD Exceeded Calibration Range
	\backslash			
	/			
		\vdash		
			\mathbb{N}	
		1		
				<u> </u>
				<u>_</u>
				<u> </u>
				<u>_</u>
				<u>_</u>
				<u>_</u>
Signature:	m Bond	h		Date: 1/23/2020
	1/ /	~ (

Revised May 2004

Page 3 of 3

APPENDIX B

Alternative Source Demonstration -November 2018 Sampling Event

LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Ave, St. Louis, MO 63103

Submitted by:

Golder Associates Inc. 13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021, USA +1 314 984 8800

May 18, 2019

Distribution List

1 Electronic Copy - Ameren Missouri

1 Hard Copy - Golder

Table of Contents

1.0	CERTI	FICATION STATEMENT1		
2.0	INTRODUCTION			
3.0	SITE DESCRIPTION AND BACKGROUND2			
	3.1	Geological and Hydrogeological Setting2		
	3.2	Utility Waste Landfill Cell 1 – LCL12		
	3.3	CCR Rule Groundwater Monitoring		
4.0	REVIE	W OF THE STATISTICALLY SIGNIFICANT INCREASE4		
5.0	EVIDENCE OF SSI FROM ALTERNATIVE SOURCE4			
	5.1	CCR Indicators		
	5.1.1	Fluoride Concentrations at TMW-15		
	5.2	Geochemical Analysis		
	5.2.1	Stiff Diagrams6		
	5.2.2	Piper Diagram6		
6.0	DEMO	NSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT6		
7.0	REFE	RENCES		

Tables

- Table 1: Review of Statistically Significant Increases
- Table 2: Types of CCR and Typical Indicator Parameters
- Table 3: Major Cation and Anion Concentrations

FIGURES

- Figure 1: Site Location and Aerial Map
- Figure 2: Calculation of Upper Prediction Limit for Fluoride at TMW-1
- Figure 3: Time Series Plot and Upper Prediction Limits for Fluoride at TMW-1
- Figure 4: TMW-1 Stiff Diagrams
- Figure 5: TMW-1 Piper Diagram

1.0 **CERTIFICATION STATEMENT**

This LCL1 – Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this LCL1 - Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G.

Principal, Practice Leader

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

3.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including, floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

3.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR Unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently the facility manages dry disposal of some fly ash and bottom ash taken from the other CCR impoundments onsite (LCPA and LCPB), as well as some dry disposal fly ash and bottom ash from the LEC itself.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low

elevation for groundwater. Three monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters.

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following were completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and (8) eight baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-1, TMW-2, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information on the design and installation of the monitoring wells is provided in the LCL1 GMP and the LCL1 2017 Annual Report.

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, the Detection Monitoring events were completed in November 2017, May 2018, and November 2018. Laboratory testing was performed for the following Appendix III constituents during Detection Monitoring:

- Boron
- Calcium
- Chloride
- 🔹 pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2018, background results from the eight baseline sampling events were used to calculate statistical upper prediction limits (UPL's). These UPL's were then compared to the Detection Monitoring results. If results from Detection Monitoring were higher than the calculated UPL, it was considered to be an initial exceedance, in which case a verification sample was then collected and tested in accordance with the LCL1 statistical analysis plan. In November 2017, there were no initial exceedances. In May 2018, three initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1 and fluoride at TMW-2. Verification sampling results confirmed all four SSI's. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report. This ASD concluded that the SSIs observed in the May 2018 sampling event were not caused by the LCL1, but rather primarily caused by relatively low calculated UPL's that did not reflect the full

natural variability within the alluvial aquifer. In November 2018, 4 initial exceedances were identified for Boron, Chloride and Fluoride at TMW-1 and Fluoride at TMW-2. Verification sampling results confirmed only the Fluoride at TMW-1 and it is the only verified SSI from this event.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASE

The SSI for fluoride occurred at monitoring well TMW-1. TMW-1 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-1 is located to the east of the LCL1, the generating plant and the two surface impoundments (LCPA and LCPB).

Based on Golder's review of the pre-disposal data discussed in Section 3.2 above, and our comparison of the predisposal data with the results from the eight CCR-Rule baseline events, it was concluded that the groundwater at the LCL1 contained low-level pre-existing impacts from CCR that pre-dated LCL1 operation. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPL) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

The intrawell UPL for fluoride at TMW-1 is 0.2269 milligrams per liter (mg/L), which is slightly above the Practical Quantitation Limit (PQL) of 0.20 mg/L provided by the laboratory. The UPL of 0.2269 mg/L was based on the results of the eight baseline sampling events for TMW-1 that ranged from 0.17 to 0.21 mg/L (**Figure 2**). During the November 2018 Detection Monitoring event, a value of 0.29 mg/L was reported, which was confirmed by a value of 0.23 mg/L during the Verification Sampling. These values do represent an SSI, but it is important to note they are very low (within 0.09 mg/L of baseline) and close to the PQL value the laboratory can accurately detect.

5.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSIs at the LCL1 are not caused by a release from the LCL1, but rather from an alternative source. The following section describes the different lines of evidence, listed below, that demonstrate this position.

- Documentation of pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the LCL1 operation.
- Review of groundwater results prior to and after construction and CCR placement in the LCL1.
- Documentation of the construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Results of geochemical analysis displaying groundwater chemistries over the past several sampling events.
- Review of groundwater results in adjacent and background monitoring wells.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	 Boron Molybdenum Lithium Sulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water	 Bromide Potassium Sodium Fluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride

Table 2: Types of CCR and Typical Indicator Parameters

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

5.1.1 Fluoride Concentrations at TMW-1

Fluoride can be an indicator of CCR impacts for fly ash and bottom ash wastes because fluoride is mobile in most hydrogeologic environments, however, it is not always present at high concentrations within all CCR wastes. At the Labadie Energy Center, fluoride has been tested for in the pore-water of both the LCPA and the LCPB. The results of the pore-water sampling show that fluoride ranges from 0.088 J - 20 J mg/L in the LCPA and from 1.0 to 2.4 mg/L in the LCPB.

As shown on **Figure 3**, current fluoride concentrations in monitoring well TMW-1 are similar to those reported prior to the operation of the LCL1. Fluoride concentrations have varied with values ranging from 0.12 - 0.28 mg/L prior to the operation of the LCL1 and from 0.17 - 0.29 mg/L since the operation of the LCL1. These similar results display that the range of fluoride concentrations has not changed prior to and after the receipt of CCR materials at the LCL1. Based on these data, in addition to the observations reported below, the variability in fluoride concentrations over time is not a result of impacts from the LCL1, but rather the result of geochemical variability in the alluvial aquifer.

As shown on **Figure 3**, if only the fluoride results at TMW-1 prior to placement of CCR waste are used (April 2014-October 2016), a UPL is 0.3201 mg/L is calculated. This value is approximately 0.10 mg/L higher than the UPL calculated from the eight baseline samples at TMW-1 collected for the CCR rule and 0.09 mg/L higher than the result reported for the January 2019 verification sampling event. Additionally, prior to CCR being placed in the

unit, fluoride values were reported at similar levels (0.28 mg/L) as those that were sampled in November 2018. Therefore, the calculated prediction limit from the CCR Rule was biased low because the results reported during the initial 8 baseline sampling rounds were relatively low for fluoride in this well¹. If the historical data are used to supplement the results collected during the CCR rule baseline period, no SSI would be triggered for fluoride at TMW-1.

In addition, the verification sample collected in January 2019 was at 0.23 mg/L, which is less than 0.005 mg/L above the baseline UPL of 0.2269 mg/L and .09 mg/L below the UPL calculated using pre-CCR values. This further demonstrates that the values at TMW-1 do not display an SSI, but rather are due to natural variability within the alluvial aquifer, especially for low level results such as these near the laboratory PQL where laboratory testing inaccuracy and variability lead to variable results.

5.2 Geochemical Analysis

During November 2017, May 2018, and November 2018 Detection Monitoring events, major cation and anion concentrations were collected. These data were used to compare major ion chemistry over time to see if the groundwater chemistry is changing.

5.2.1 Stiff Diagrams

Stiff diagrams visually display the major cation and anion data. **Figure 4** displays the Stiff diagrams from the November 2017, May 2018, and November 2018 Detection Monitoring events. Data from November 2017 event display nearly identical distribution to that of May 2018, and November 2018 events. If impacts from the LCL1 were causing the apparent SSIs, then a shift in groundwater chemistry would be expected. This figure demonstrates that there has not been a shift in groundwater chemistry due to CCR impact between the two sampling events.

5.2.2 Piper Diagram

A Piper diagram is a graphical technique used to classify different groundwater chemistry. The same data used to generate the Stiff diagram are plotted on a ternary Piper diagram according to major cation and anion concentrations. In addition to showing instantaneous concentrations, Piper diagrams can be used to determine if groundwater chemistry is changing, either spatially or temporally. **Figure 7** displays a Piper diagram for TMW-1 over time. If CCR impacts from the LCL1 were causing the apparent SSIs, then a shift in groundwater chemistry between the sampling events.

Additionally, a comparison of this diagram with those in the LCPB ASD (2018 LCPB Annual Report) show that groundwater chemistry in the TMW-1 well plots in the area for background.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in Section 5 above, the SSI at TMW-1 was not caused by impacts from the LCL1. The SSI appears to be caused by numerous factors, but is primarily caused by pre-existing low concentrations of CCR indicators that pre-date the LCL1 and relatively low calculated UPL's and a relatively small set of baseline data that do not reflect the full natural variability within the alluvial aquifer. This is because only 8 baseline samples were collected prior to detection monitoring and these sampling events were not able to capture

¹ Given that the CCR material was not placed in LCL1 until after a liner system was installed, it is not likely that the decreased concentrations at TMW-1 observed during CCR sampling are a result of isolation of previous release of CCR materials.

the full extent of the natural spatial and temporal variability in the alluvial aquifer especially for those results near the laboratory PQL. When results are compared to historical data from the state sampling program, it is apparent that there are no impacts from the LCL1.

As required by the CCR Rule, eight (8) baseline samples were collected prior to the October 2017 deadline which were used to calculate the UPL at each compliance well around the LCL1. According to the *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (USEPA 2009), eight (8) samples is the minimum number of samples recommended in order to complete statistical tests and future data will be used to enlarge the dataset for UPL calculation. As shown throughout this ASD, the minimum 8 (eight) baseline samples has not been able to capture the full extent of the natural spatial and temporal variability. In addition, inaccuracy of laboratory testing at low levels near the PQL can produce results higher than the UPL when the baseline dataset is small.

Other supplemental lines of evidence also demonstrate that there are no impacts on groundwater from the LCL1. Geochemical comparisons display that there has been no significant change in groundwater chemistry between samples below the UPL and those above. Further, the construction of the LCL1, with 2-feet of compacted clay overlain by a 60-mil HDPE liner, also limits the likelihood that the SSI is a result an impact from LCL1. SSIs observed in TMW-1 are not caused by impacts from the LCL1.

7.0 **REFERENCES**

- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.
- Reitz & Jens, Inc. 2014. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

Table 3

Major Cation and Anion Concentrations LCL1 - Alternative Source Demonstration Labadie Energy Center, Franklin County, MO

Monitoring Well ID and Date of	Total Sodium	Total Potassium	Total Calcium	Total Magnesium	Total Chloride	Total Sulfate	Total Alkalinity ⁽¹⁾
Sample Collection	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
L-TMW-1 11/8/2017	10.6	5.82	156	42.2	3.0	83.3	483
L-TMW-1 5/23/2018	11.8	5.77	162	43.6	3.2	100	552
L-TMW-1 11/9/2018	11.5	5.88	162	44.1	3.7	97	534

Notes:

1) Alkalinity is equal to the sum of Carbonate and Bicarbonate.

2) mg/L - milligrams per liter.

Prepared by: EMS Checked by: JSI Reviewed by: MNH

 \oplus

Labadie Energy Center Property Boundary LCPB - Fly Ash Surface Impoundment LCPA - Bottom Ash Surface Impountment LCL1 - UWL Cell 1

LCL1 Monitoring Well

Background Monitoring Well

NOTES

1. ALL LOCATIONS AND BOUNDARIES ARE APPROXIMATE. 2. GROUNDWATER MONITORING WELLS INSTALLED BY GOLDER ASSOCIATES WERE SURVEYED BY ZAHNER & ASSOCIATES, INC. ON FEBRUARY 11 AND APRIL 28, 2016. 3. GROUNDWATER MONITORING WELLS INSTALLED BY REITZ AND JENS, INC. WERE SURVEYED BY KDG. 4. UWL - UTILITY WASTE LANDFILL.

REFERENCES

1. ZAHNER AND ASSOCIATES, INC. 2016. LOT CONSOLIDATION PLAT OF "LABADIE ENERGY CENTER" - PREPARED FOR AMEREN MISSOURI. REVISED JUNE 15, 2016. 2.) COORDINATE SYSTEM: NAD 1983 STATEPLANE MISSOURI EÁST FIPS 2,401 FEET.

0 5001,000 2,000 3,000 4,000

Feet

CLIENT AMEREN MISSOURI LABADIE ENERGY CENTER

PROJECT

GROUNDWATER MONITORING PROGRAM

TITLE SITE LOCATION AND AERIAL MAP

CONSULTANT		YYYY-MM-DD	2019-05-07	
		PREPARED	EMS	
		DESIGN	JSI	
		REVIEW	JSI	
GOLDER	APPROVED	MNH		
PROJECT No. 153-140601	PHASE 0001			FIGURE

Ameren

APPENDIX C

Alternative Source Demonstration-May 2019 Sampling Event

LCL1 - Alternative Source Demonstration

Labadie Energy Center, Franklin County, Missouri, USA

Submitted to:

Ameren Missouri 1901 Chouteau Ave, St. Louis, MO 63103

Submitted by:

Golder Associates Inc. 13515 Barrett Parkway Drive, Suite 260 Ballwin, MO 63021, USA +1 314 984 8800

January 2020

Distribution List

1 Electronic Copy - Ameren Missouri

1 Hard Copy - Golder

Table of Contents

1.0	CERTIFICATION STATEMENT1			
2.0	INTRODUCTION			
3.0	SITE DESCRIPTION AND BACKGROUND2			
	3.1	Geological and Hydrogeological Setting2		
	3.2	Utility Waste Landfill Cell 1 – LCL12		
	3.3	CCR Rule Groundwater Monitoring		
4.0	REVIE	W OF THE STATISTICALLY SIGNIFICANT INCREASE4		
5.0	EVIDENCE OF SSI FROM ALTERNATIVE SOURCE4			
	5.1	CCR Indicators		
	5.1.1	Chloride Concentrations at TMW-15		
	5.2	Geochemical Analysis		
	5.2.1	Stiff Diagrams6		
	5.2.2	Piper Diagram6		
6.0	DEMO	NSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT6		
7.0	REFERENCES			

Tables

- Table 1: May 2019 Detection Monitoring Results
- Table 2: Types of CCR and Typical Indicator Parameters (in text)
- Table 3: Major Cation and Anion Concentrations

FIGURES

- Figure 1: Site Location and Aerial Map
- Figure 2: Calculation of Upper Prediction Limits for Chloride at TMW-1
- Figure 3: Time Series Plot and Upper Prediction Limits for Chloride at TMW-1
- Figure 4: TMW-1 Stiff Diagrams
- Figure 5: TMW-1 Piper Diagram

1.0 CERTIFICATION STATEMENT

This *LCL1* – *Alternative Source Demonstration, Labadie Energy Center, Franklin County, Missouri, USA* has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule under the direction of a licensed professional engineer with Golder Associates Inc.

I hereby certify that this *LCL1* – Alternative Source Demonstration, Labadie Energy Center, Franklin County, *Missouri, USA* located at 226 Labadie Power Plant Road, Labadie Missouri 63055 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

GOLDER ASSOCIATES INC.

Mark Haddock, P.E., R.G.

Principal, Practice Leader

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this *LCL1 – Alternative Source Demonstration* has been prepared to document an Alternative Source Demonstration (ASD) for a Statistically Significant Increase (SSI) calculated at Ameren Missouri's (Ameren) Labadie Energy Center (LEC), Utility Waste Landfill (UWL) LCL1 or Cell 1. This document satisfies the requirements of §257.94(e)(2) which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

The LEC is located approximately 35 miles west of downtown St. Louis in Franklin County, Missouri just south of the Missouri River. **Figure 1** depicts the site location and layout, including the location of LCL1. The LEC encompasses approximately 2,400 acres and is located within the Missouri River Valley. The facility is bounded to the north by the Missouri River, to the west by Labadie Creek, to the northeast and east by agricultural land, and to the south by a railroad line and bedrock bluffs.

3.1 Geological and Hydrogeological Setting

The site lies between the Missouri River (to the north) and bedrock bluffs (to the south). Flow and deposition from the Missouri River have resulted in thick alluvial deposits which lie on top of bedrock. These alluvial deposits, which can range from approximately 90 to 120 feet thick, comprise the uppermost aquifer. Overall, this alluvial aquifer is described as a fining-upwards sequence of stratified sands and gravels with varying amounts of silts and clays. Based on drilling records, the alluvial aquifer is divided into sub-units, including, floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region consists of Ordovician-aged rock. Formations include primarily limestone, dolomite, sandstone, and shale and are comprised of the Plattin Group, Joachim Dolomite, St. Peter Sandstone, Powell Dolomite, and the Cotter/Jefferson City Dolomites.

3.2 Utility Waste Landfill Cell 1 – LCL1

UWL Cell 1 is referred to by Ameren as the LCL1, or Cell 1. The LCL1 is approximately 31 acres in size and is located east of the generating plant (**Figure 1**). The CCR Unit manages CCR from the LEC and is permitted to accept fly ash waste, bottom ash waste, slag waste and flue gas emission control waste generated primarily from the combustion of coal or other fossil fuels. Currently the facility manages dry disposal of some fly ash and bottom ash taken from the other CCR impoundments onsite (LCPA and LCPB), as well as some dry disposal fly ash and bottom ash from the LEC itself.

The LCL1 was constructed with a composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil High Density Polyethylene (HDPE) geomembrane liner. Information on the design of the UWL is available in the 2013 Proposed Construction Permit application (Gredell and Reitz & Jens, 2013).

A groundwater monitoring well network was installed in 2013 and 2014 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and consists of 36 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). Most of these monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low

elevation for groundwater. Three (3) monitoring wells (MW-33(D), MW-34(D), and MW-35(D)) are installed in the intermediate/deeper zones of the alluvial aquifer. Groundwater samples have been collected in most of these monitoring wells since April 2013 and tested for the MDNR UWL parameters.

The permit for the LCL1 was issued October 27, 2016 (permit #0907101). Eleven (11) sampling events were performed prior to October 27, 2016 at most of the state required UWL monitoring wells and four (4) rounds of baseline CCR Rule sampling were completed at CCR Rule monitoring wells (discussed below). These results represent groundwater quality prior to CCR placement in the UWL. The results from these pre-disposal monitoring events are used in conjunction with other site information in the ASD presented below.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, the following was completed prior to the October 17, 2017 deadline; (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and eight (8) baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the LCL1 consists of six (6) monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. Two (2) existing monitoring wells (MW-26 and TMW-1) were installed by Reitz & Jens, Inc. in 2013 as a part of the state UWL monitoring program. The remaining monitoring wells (TMW-2, BMW-1S, and BMW-3S) were installed by Golder in 2015 and 2016 for CCR Rule groundwater monitoring purposes. More information on the design and installation of the monitoring wells is provided in the LCL1 GMP and the LCL1 2017 Annual Report.

Between May 2016 and June 2017, eight (8) baseline sampling events were completed for the LCL1. After baseline sampling, Detection Monitoring events were completed in November 2017, May 2018, November 2018, and May 2019. Laboratory testing was performed for the following Appendix III constituents during Detection Monitoring:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2018, background results from the eight (8) baseline sampling events were used to calculate statistical upper prediction limits (UPL). These UPL were then compared to the Detection Monitoring results. If results from Detection Monitoring were higher than the calculated UPL, it is an initial exceedance, in which case a verification sample was collected and tested in accordance with the LCL1 statistical analysis plan. Per the statistical analysis plan after the May 2019 sampling event, the UPLs were updated to include four (4) additional sampling events that had been completed for Detection Monitoring.
In November 2017, there were no initial exceedances. In May 2018, three initial exceedances were identified including boron, fluoride, and total dissolved solids (TDS) at TMW-1 and fluoride at TMW-2. Verification sampling results confirmed all four SSIs. An ASD was prepared for the May 2018 results and is available in the 2018 LCL1 Annual Report. This ASD concluded that the SSIs observed in the May 2018 sampling event were not caused by the LCL1, but rather primarily caused by relatively low calculated UPLs that did not reflect the full, natural variability within the alluvial aquifer. In November 2018, four (4) initial exceedances were identified for boron, chloride and fluoride at TMW-1 and fluoride at TMW-2. Verification sampling results confirmed only the fluoride at TMW-1 result. An ASD was prepared for the November 2018 results and is available in the 2019 LCL1 Annual Report. This ASD also concluded that the SSI observed in the November 2018 sampling event was not caused by the LCL1, but rather primarily caused by relatively low calculated UPL's that did not reflect the natural of the LCL1 and fluoride that the SSI observed in the November 2018 sampling event was not caused by the LCL1, but rather primarily caused by relatively low calculated UPL's that did not reflect the natural geochemical variability within the alluvial aquifer.

In May 2019, seven (7) initial exceedances were identified for pH, calcium, chloride, and fluoride as shown on **Table 1**. Verification sampling results confirmed only chloride at TMW-1.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASE

The SSI for chloride occurred at monitoring well TMW-1. TMW-1 is screened in the upper portion of the alluvial aquifer just below the average seasonal low for groundwater. As shown on **Figure 1**, TMW-1 is located to the east of the LCL1, the generating plant and the two surface impoundments (LCPA and LCPB).

Based on Golder's review of the pre-disposal data discussed in Section 3.2 above, and our comparison of the predisposal data with the results from the eight (8) CCR-Rule baseline events, it was concluded that the groundwater at the LCL1 contained low-level pre-existing impacts from CCR that pre-dated LCL1 operation. As a result of these pre-existing impacts, the LCL1 statistical analysis plan uses intrawell upper prediction limits (UPL) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program.

The intrawell UPL for chloride at TMW-1 is 3.603 milligrams per liter (mg/L), which is slightly above the Practical Quantitation Limit (PQL) of 1.0 mg/L provided by the laboratory. The UPL of 3.603 mg/L was based on the results of the eight baseline sampling events for TMW-1 that ranged from 1.5 to 2.9 mg/L (**Figure 2**). During the May 2019 Detection Monitoring event, a value of 3.7 mg/L was reported. This value does represent an SSI, but it is important to note it is very low (less than 0.1 mg/L above the UPL) and close to the PQL value the laboratory can accurately detect.

5.0 EVIDENCE OF SSI FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSI at the LCL1 is not caused by a release from the LCL1, but rather from an alternative source. The following section describes the different lines of evidence, listed below, that demonstrate this position.

- Documentation of pre-existing, low level concentrations of CCR indicators in groundwater that pre-date the LCL1 operation.
- Review of groundwater results prior to and after construction and CCR placement in the LCL1.
- Documentation of the construction of the LCL1 with a 60-mil geomembrane liner and a 2-foot thick clay barrier.
- Results of geochemical analysis displaying groundwater chemistries over the past several sampling events.

Review of groundwater results in adjacent and background monitoring wells.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 2** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	 Boron Molybdenum Lithium Sulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	 Bromide Potassium Sodium Fluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride

Table 2: Types	of CCR and	Typical Indicator	Parameters

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

5.1.1 Chloride Concentrations at TMW-1

Chloride is not known to be an indicator of fly ash or boiler slag/bottom ash (EPRI 2012, EPRI 2017), but can be an indicator for FGD type wastes and is commonly found near salt and brine treated roadways. There is no FGD waste at the LEC, and fly ash or bottom ash/boiler slag are the typical wastes in the LCL1 as well as the LCPA and LCPB, therefore elevated concentrations in chloride alone are not a good indicator of CCR impacts. Concentrations for the May 2019 sampling event and subsequent verification sampling event are 3.7 and 4.4 mg/L respectively. These values are just above the initial UPL used for chloride concentrations at TMW-1 of 3.603 mg/L (**Figure 2**). This initial UPL is calculated based on eight baseline sampling events collected in 2016 and 2017 during which time chloride concentrations ranged from 1.5 to 2.9 mg/L. UPLs were updated after the May 2019 sampling event as outlined by the Statistical Analysis Plan. The updated UPL value that will be used for TMW-1, starting with the November 2019 sampling event, is 4.246 mg/L (**Figure 2**). State required sampling has also been completed at TMW-1 since April 2013, and chloride concentrations have ranged from 1.0 to 6.0

mg/L. If these results are included in the calculation of an UPL, the UPL for TMW-1 would be increased to 5.863 mg/L (**Figure 2**). **Figure 3** displays the results from TMW-1 against these UPLs and demonstrates that the results from the May 2019 sampling event are well within the typical range for results collected at TMW-1 historically (**Figure 3**). Additionally, CCR was placed in the LCL1 starting in October 2016 and results prior to the receipt of CCR in the LCL1 were historically higher than those currently detected.

Furthermore, chloride results in the background wells BMW-1S and BMW-2S, located approximately 2.5 miles to the southwest of the LCL1 (**Figure 1**) and outside of any possible impacts from the LCL1 or the LCPA have had chloride results ranging from 1.3 to 21.2 mg/L with an initial UPL of 13.75 mg/L and an updated May 2019 UPL of 8.317 mg/L. **Figure 3** displays the results from TMW-1 to the background UPLs and demonstrates that the results from the May 2019 sampling event are well within the background limits for chloride in the shallow zone of the alluvial aquifer at the LEC.

These results indicated that relatively low calculated UPLs for TMW-1 do not reflect the full, natural variability within the alluvial aquifer. When May 2019 results from TMW-1 are compared to an expanded historical dataset and to background monitoring wells, the results are well within compliance.

5.2 Geochemical Analysis

During November 2017, May 2018, November 2018, and May 2019 Detection Monitoring events, major cation and anion concentrations were collected. These data were used to compare major ion chemistry over time to see if the groundwater chemistry is changing. The data used to generate these diagrams is provided in **Table 3**.

5.2.1 Stiff Diagrams

Stiff diagrams visually display the major cation and anion data. **Figure 4** displays the Stiff diagrams from the November 2017, May 2018, November 2018, and May 2019 Detection Monitoring events. Data from the November 2017 event display nearly identical distribution to that of May 2018, November 2018, May 2019 events. If impacts from the LCL1 were causing the apparent SSIs, then a shift in groundwater chemistry would be expected. This figure demonstrates that there has not been a shift in groundwater chemistry due to CCR impact between the two sampling events.

5.2.2 Piper Diagram

A Piper diagram is a graphical technique used to classify different groundwater chemistry. The same data used to generate the Stiff diagram are plotted on a ternary Piper diagram according to major cation and anion concentrations. In addition to showing instantaneous concentrations, Piper diagrams can be used to determine if groundwater chemistry is changing, either spatially or temporally. **Figure 5** displays a Piper diagram for TMW-1 over time. If CCR impacts from the LCL1 were causing the apparent SSIs, then a shift in groundwater chemistry between the sampling events.

Additionally, a comparison of this diagram with those in the November 2017 LCPB ASD (2018 LCPB Annual Report) show that groundwater chemistry in the TMW-1 well plots in the area for background.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY LCL1 IMPACT

Based on the information presented in Section 5 above, the SSI at TMW-1 was not caused by impacts from the LCL1. The SSI appears to be caused by numerous factors but is primarily caused by relatively low calculated UPLs and a relatively small set of baseline data that do not reflect the full natural variability within the alluvial aquifer. This is because only eight (8) baseline samples were collected prior to detection monitoring and these

sampling events were not able to capture the full extent of the natural spatial and temporal variability in the alluvial aquifer especially for those results near the laboratory PQL. When results are compared to historical data from the state sampling program, it is apparent that there are no impacts from the LCL1.

As required by the CCR Rule, eight (8) baseline samples were collected prior to the October 2017 deadline which were used to calculate the UPL at each compliance well around the LCL1. According to the *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance* (USEPA 2009), eight (8) samples is the minimum number of samples recommended in order to complete statistical tests and future data will be used to enlarge the dataset for UPL calculation. As shown throughout this ASD, the minimum 8 (eight) baseline samples have not been able to capture the full extent of the natural spatial and temporal variability. Starting with the November 2019 statistical analysis, the baseline data set will be enlarged to a minimum of 12 (twelve) samples and the May 2019 results were within those statistical limits. In addition, inaccuracy of laboratory testing at low levels near the PQL can produce results higher than the UPL when the baseline dataset is small.

Other supplemental lines of evidence also demonstrate that there are no impacts on groundwater from the LCL1. Geochemical comparisons display that there has been no significant change in groundwater chemistry between samples below the UPL and those above. Further, the construction of the LCL1, with 2-feet of compacted clay overlain by a 60-mil HDPE liner, also limits the likelihood that the SSI is a result an impact from LCL1. The SSI observed in TMW-1 was not caused by impacts from the LCL1.

7.0 **REFERENCES**

- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Labadie Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources and Reitz & Jens, Inc. 2011. Detailed Site Investigation. Ameren Missouri Labadie Power Plant Proposed Utility Waste Disposal Area. Franklin County, Missouri. February 4, 2011.
- Golder Associates Inc., 2017, 40 CFR Part 257 Groundwater Monitoring Plan, LCL1 Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2018, 2017 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019a, 2018 Annual Groundwater Monitoring Report, LCPB Fly Ash Surface Impoundment, Labadie Energy Center Franklin County, Missouri, USA.
- Golder Associates Inc., 2019b, 2018 Annual Groundwater Monitoring Report, LCL1 Utility Waste Landfill Surface Impoundment, Labadie Energy Center – Franklin County, Missouri, USA.
- Golder Associates Inc., 2019C, Updated Statistical Limits With Additional Background Data LCL1.
- Golder Associates Inc., 2019D, Updated Statistical Limits With Additional Background Data LCPB.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2013. Groundwater Detection Monitoring System for a Proposed Utility Waste Landfill Franklin County, Missouri. January 3, 2013.
- Reitz & Jens, Inc. 2013. Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal Area. Franklin County, Missouri. May 9, 2013.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc., 2014. Ameren Missouri Labadie Energy Center Construction Permit Application for a Proposed Utility Waste Landfill Franklin County Missouri. Revised January 2014.
- Reitz & Jens, Inc. 2014. Additional Ground Water Detection Monitoring Wells Installation Report. Ameren Missouri Labadie Energy Center Utility Waste Landfill (UWL) Solid Waste Disposal.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March.

USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].

Tables

Table 1May 2019 Detection Monitoring ResultsLCL1 - Utility Waste Landfill Cell 1Labadie Energy Center, Franklin County, MO

		BACKGROUND		GROUNDWATER MONITORING WELLS							
ANALYTE	UNITS	BMW-1S	BMW-2S	Prediction Limit MW-26	MW-26	Prediction Limit TMW-1	TMW-1	Prediction Limit TMW-2	TMW-2	Prediction Limit TMW-3	TMW-3
				May 2019 Det	ection Monit	oring Event					
DATE	NA	5/1/2019	5/1/2019	NA	5/8/2019	NA	5/2/2019	NA	5/2/2019	NA	5/8/2019
рН	SU	6.53	6.18	6.2-7.44	6.02	6.437-7.305	6.91	6.303-7.517	6.87	6.55-7.207	5.83
BORON, TOTAL	μg/L	111	61.3 J	DQR	98.2 J	117.5	109	139.9	98.5 J	140.0	114
CALCIUM, TOTAL	μg/L	196,000	126,000	154,083	182,000	175,638	164,000 J	200,867	176,000	217,698	170,000
CHLORIDE, TOTAL	mg/L	4.4	1.4	14.4	3.3	3.603	3.7	6.933	5.3	8.489	6.2
FLUORIDE, TOTAL	mg/L	0.22	0.21	DQR	0.20	0.2269	0.24	DQR	0.24	DQR	0.19 J
SULFATE, TOTAL	mg/L	39.2	29.4	33.38	19.3	115	98.6 J	112.1	86.4	97.4	48.9
TOTAL DISSOLVED SOLIDS	mg/L	740	459	520.2	516	694.1	664	775.5	676	752.2	733
			1	August 2019 Ve	erification San	npling Event					
DATE	NA				8/21/2019		8/21/2019		8/21/2019		8/21/2019
рН	SU				6.54		6.61		6.45		6.57
BORON, TOTAL	µg/L										
CALCIUM, TOTAL	μg/L				142,000						
CHLORIDE, TOTAL	mg/L						4.4				
FLUORIDE, TOTAL	mg/L				0.15 J		ND		ND		
SULFATE, TOTAL	mg/L										
TOTAL DISSOLVED SOLIDS	mg/L										

NOTES:

1. Unit Abbreviations: μ g/L - micrograms per liter, mg/L - milligrams per liter, SU - standard units.

2. J - Result is an estimated value.

3. ND - Constituent was analyzed for, but was not detected above the Method Detection Limit (MDL) and is considered a non-detect. Values displayed as ND.

4. NA - Not applicable.

5. Prediction Limits calculated using Sanitas Software.

6. If all background values are less than the Practical Quantitation Limit (PQL) then the Double Quantification Rule (DQR) is used.

7. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).

8. Values highlighted in green indicate an initial exceedance above (or below for pH) the prediction limit that was not confirmed by Verification Sampling (not a SSI)

9. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.

Table 3Major Cation and Anion ConcentrationsLCL1 - Alternative Source DemonstrationLabadie Energy Center, Franklin County, MO

Monitoring Well ID and Date of Sample Collection	Total Sodium (mg/L)	Total Potassium (mg/L)	Total Calcium (mg/L)	Total Magnesium (mg/L)	Total Chloride (mg/L)	Total Sulfate (mg/L)	Total Alkalinity ⁽¹⁾ (mg/L)
L-TMW-1 - 11/8/2017	10.6	5.82	156	42.2	3.0	83.3	483
L-TMW-1 - 5/23/2018	11.8	5.77	162	43.6	3.2	100	552
L-TMW-1 - 11/9/2018	11.5	5.88	162	44.1	3.7	97	534
L-TMW-1 - 5/2/2019	11.2	5.51	164	44.2	3.7	98.6	543

Notes:

1) Alkalinity is equal to the sum of Carbonate and Bicarbonate.

2) mg/L - milligrams per liter.

Prepared by: JSI Checked by: RJF Reviewed by: MNH

Figures

0	750	1,500	3,000
			East

TITLE /A	REV. NO. N/A	FIGURE 2	
-------------	-----------------	-----------------	--

Initial Background UPL – 13.75 mg/L

Updated Background UPL – 8.317 mg/L

TMW-1 UPL Using Historical Data – 5.863 mg/L

▲ L-TMW-1 (CCR Rule Program)

L-TMW-1 (State UWL Program)

Time Series Plot and Upper Prediction Limits for Chloride at TMW-1

TITLE ′A	REV. NO. N/A	FIGURE 3	

HCO3 10 mEq

HCO3 10 mEq

TMW-1 Stiff Diagrams

REV. NO. N/A

FIGURE 4

N/A

N/A

153140601.0001

2020/01/16

RJF

MNH

JSI

◆L-TMW-1* 11/8/2017
▲L-TMW-1* 11/9/2018
▲L-TMW-1* 5/2/2019
▲L-TMW-1* 5/23/2018

ANIONS

TMW-1 Piper Diagram

SUBTITLE N/A

N/A

REV. NO. N/A FIGURE 5

APPENDIX D

Potentiometric Surface Maps

1 In IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEN MODIFI

1 IF THIS MEASUREMENT DOES NOT MATCH WHAT IS SHOWN, THE SHEET SIZE HAS BEEF

golder.com