Project Status Report Champaign Former MGP Site 308 N. 5th Street Champaign, Illinois State ID 0190100008

March 2013

Prepared for:

AMEREN ILLINOIS COMPANY

St. Louis, Missouri

Columbia, Illinois

Project Status Report Champaign Former MGP Site 308 N. 5th Street Champaign, Illinois State ID 0190100008

March 2013

Prepared for:

AMEREN ILLINOIS COMPANY St. Louis, Missouri

PSC INDUSTRIAL OUTSOURCING, LP 210 West Sand Bank Road Post Office Box 230 Columbia, Illinois 62236-0230

Project 624-0908-0120

TABLE OF CONTENTS

				<u>Page</u>			
E	Executive Summaryiv						
1			INTRODUCTION	1			
	1.1		Site Information	1			
	1.2		Legal Description	2			
	1.3		Site History				
		1.3.1	Recognized Environmental Concerns				
	1.4		Site Setting				
		1.4.1	Regional Setting				
		1.4.2	Site Topography				
		1.4.3	Subsurface Geology				
		1.4.4	Site Hydrogeology				
2			EXTENT OF SUBSURFACE IMPACT	7			
	2.1		Tier 1 Evaluation	7			
		2.1.1	Soil Ingestion Exposure Route	7			
		2.1.2	Soil Inhalation Exposure Route	7			
		2.1.3	Indoor Inhalation Exposure Route				
		2.1.4	Soil Component to Groundwater Ingestion Exposure Route	8			
		2.1.5	Groundwater Ingestion Exposure Route	8			
3			REMEDIATION OBJECTIVES	9			
4			REMEDIAL ACTIONS	10			
	4.1		Site Remediation Phases 1 through 9	10			
	4.2		Tent Structure	11			
	4.3		Soil Removal and Backfilling Activities				
	4.4		Perimeter Excavations	12			
	4.5		Ambient Air Monitoring	12			
	4.6		Wastewater Treatment	13			
	4.7		Confirmation Soil Sampling	13			
		4.7.1	Remediation Phases 1 through 9	13			
		4.7.2	Perimeter Areas 1 through 6				
	4.8		In-Situ Chemical Oxidation (ISCO) Pilot Study				
		4.8.1	Pilot Study Analytical Results	16			
		4.8.2	ISCO Application to Excavation Floors				
	4.9		Groundwater Monitoring Well Abandonment, Installation, and Field	1			
	Hyo	draulic Co	onductivity Testing	17			
		4.9.1	Groundwater Monitoring Well Abandonment and Installation				
		4.9.2	Field Hydraulic Conductivity Testing	19			
5			Confirmation Sample Analytical Results	21			

TABLE OF CONTENTS

	<u>I</u>	Page
5.1	Phases 1 through 9 Analytical Results	
5.1.1	Confirmation Wall Samples	
5.1.2	Confirmation Floor Samples	
5.2	Perimeter Excavation Analytical Results	
5.3	Evaluation for Soil Attenuation	
5.4	Groundwater	24
6	Tier 2 evaluations	25
7	Additional remedial actions	26
8	EFFECTIVENESS ON ADDRESSING IMPACT	27
9	SUMMARY AND CONCLUSIONS	28
10	ILLINOIS LICENSED PROFESSINAL ENGINEER REVIEW	29
References		
List of Tables		
List of Figures		
APPENDIX A	Wastewater Laboratory Analytical Datasheets	
APPENDIX B	Soil Sample Laboratory Analytical Datasheets - Backfill	
APPENDIX C	Analytical Results of ISCO Pilot Study	
APPENDIX D	Well Construction and Well Abandonment Forms	
APPENDIX E	Field Hydraulic Conductivity Testing Datasheets	
APPENDIX F	Soil Sample Laboratory Analytical Datasheets – Remedial Action Confirmation Samples	
APPENDIX G	Soil Sample Laboratory Analytical Datasheets – Remedial Action Perimeter Samples	

Executive Summary

PSC Industrial Outsourcing, LP (PSC) is submitting this *Project Status Report* on behalf of Ameren Illinois Company (Ameren Illinois) for the former Champaign Manufactured Gas Plant (MGP) site located at 308 N. 5th Street in Champaign, Illinois. This property, referred to as the "site" from this point forward, is currently enrolled in the Illinois Environmental Protection Agency (IEPA) Site Remediation Program (SRP) to address residual constituents from a former MGP and has been assigned LPC #0190100008.

Numerous site investigations and remedial activities were performed at the site dating back to 1986 that identified recognized environmental concerns. This Project Status Report will include information about on-site subsurface impact and remedial activities only. Off-site subsurface impact will be addressed in separate documents. A comprehensive site investigation was performed and the extent of impact was evaluated and presented in the *Comprehensive Site Investigation Report* (CSIR) dated December 2007. The extent of subsurface impact was delineated and constituents of concern (COC) were identified on-site that exceed Tiered Approach to Corrective Action Objectives (TACO) Tier 1 Remedial Objectives (RO), non-TACO or provisional ROs, or Groundwater Quality Standards (IAC Section 620). The remedial objectives and approach to address the subsurface impact were presented in the *Remedial Objectives Report* (ROR) and *Remedial Action Plan* (RAP) dated December 2008. An Addendum to the ROR dated September 1, 2010 was submitted and approved by the IEPA. Addendums to the RAP dated September 23, 2010 and June 1, 2011 were also submitted and approved by the IEPA.

The most recent remedial activities were completed at the site between June 2009 and September 2011. Impacted soil within the remediation site boundaries were excavated approximately 16 to 28 feet (ft) below ground surface (bgs) as shown on Figure ES-1. The soil excavation was completed within a temporary tent structure, approximately 40 meters by 65 meters in size, to minimize dust and odors in the surrounding area. Due to the size of the property, the remediation was completed in nine individual phases and the tent structure was relocated for each phase. The site perimeter areas that were not excavated beneath the tent structure were also removed as an open-air excavation following the nine remedial phases.

The results of each remediation phase and perimeter excavations were compiled to determine the effectiveness of the remedial actions for the site as a whole. Soil confirmation samples collected around the site perimeter contained exceedances of Tier 1 ROs following the remediation activities to depths up to 20 feet bgs; therefore, In-Situ Chemical Oxidation (ISCO) treatment will be completed on-site to address the perimeter exceedances.

This document was prepared to present to the IEPA a summary of the remedial actions that have been completed to date. A Remedial Action Completion Report (RACR) will be submitted to the IEPA following the ISCO injections. The RACR will provide analytical results from confirmation samples collected following the ISCO treatment, details of exposure pathway exclusions, and any special conditions that may be required to achieve the approved remediation objectives. At that time, Ameren Illinois will request a No Further Remediation (NFR) determination for the site at 308 N. 5th Street.

1 INTRODUCTION

On behalf of Ameren Illinois Company (Ameren Illinois), PSC Industrial Outsourcing, LP (PSC) has prepared this *Project Status Report* for the former Manufactured Gas Plant (MGP) located at 308 N. 5th Street in Champaign, Illinois (Figure 1-1). The investigation and remediation activities conducted at this property were part of the overall activities to address the release of MGP-related constituents from former MGP operations. This Project Status Report will include information about on-site subsurface impact and remedial activities only. Off-site subsurface impact will be addressed in separate documents.

The property, referred to as the "site" from this point forward, is currently enrolled in the Illinois Environmental Protection Agency (IEPA) Site Remediation Program (SRP) and has been assigned LPC #0190100008. The site consists of a vacant lot on which the former MGP operated. Subsurface impact was identified during site investigation activities that were performed as part of Ameren Illinois' evaluation of the former MGP operations.

The site investigation activities have been summarized in the *Comprehensive Site Investigation Report* (CSIR), PSC 2007. To outline the approach for addressing the impact, PSC prepared a *Remedial Objectives Report* (ROR) and a *Remedial Action Plan* (RAP) both dated December 2008. An Addendum to the ROR dated September 1, 2010 and Addendums to the RAP dated September 23, 2010 and June 1, 2011, respectively, were also submitted and approved by the IEPA.

Impact to soil and groundwater was identified during site investigation activities at levels that exceeded Tier 1 ROs. Ameren Illinois has addressed the majority of the impact through soil excavation and disposal. This Project Status Report is being submitted to document the remedial actions that have been completed to date. An additional remedial action consisting of In-Situ Chemical Oxidation (ISCO) is proposed to address soil impact that remains around the site perimeter. A Remedial Action Completion Report (RACR) will be submitted at a future date which will include details of the ISCO treatment and results.

1.1 Site Information

The site is zoned as commercial property and consists of a vacant lot approximately 2.4 acres in size at 308 N. 5th Street in Champaign, Illinois. The site is located in the northeast quarter of the southwest quarter of Section 7, Township 19 North, Range 9 East of the Third Principal Meridian. The site is identified on Figure 1-2.

A railroad right-of-way (Norfolk-Southern) borders the site to the north and several residential properties are located north of the active track. The Sixth Street right-of-way is adjacent to the east; however, Sixth Street is abandoned between the railroad right-of-way and the alley south of the site. During remedial activities, the eastern portion of the site was extended to encompass the abandoned portion of the Sixth Street right-of-way to effectively address the subsurface impact in that area. Other property east of the Sixth Street right-of-way is zoned commercial and consists of

vacant land and parking lots. Residential properties to the south are separated from the site by a chain link fence and an alleyway. Fifth Street borders the site to the west and separates the site from residential properties. The surrounding neighborhood is anticipated to remain zoned as residential and light-commercial. The future use of the site is uncertain at this time, but Ameren Illinois intends to restrict the site to commercial property use.

1.2 Legal Description

The legal description for the Champaign remediation site is as follows:

Part of the SW ¼, of Sec. 7 T.19N. R.9E. of the 3rd. PM., City of Champaign, Champaign County, Illinois, more particularly described as follows:

Lots 7, 8, 9, 10, 11, and 12 in block 29 (except railroad right-of-way) of Seminary Addition to Urbana, now a part of the City of Champaign lying south of the railroad right-of-way;

And lots 1, 2, and 3 in block 31 of Seminary Addition to Urbana, now a part of the City of Champaign;

And a strip of land 66 feet in width known as vacated Hill Street lying between blocks 29 and 31:

And lots 1, 2, and 3 of Assessor's Plat of subdivision of lot 8 in M.W. Busey's subdivision of south part of lot 1 of the south west quarter of Section 1, Township 19 North, Range 9 East of the third principal meridian, and lots 4, 5 and 6 in block 31 of Seminary Addition to Urbana, now a part of the City of Champaign, as per plat recorded in deed record 35 page 66;

All situated in the City of Champaign, County of Champaign and the State of Illinois.

1.3 Site History

The following information relative to MGP history is summarized from Sanborn Fire Insurance Maps (Sanborn Maps), Brown's Directory of American Gas Companies (Brown's Directories), Ameren Illinois files, and other historical documents.

Historical information indicates that gas was manufactured on the site as early as 1869 and continued through 1933. Gas was produced by coal carbonization, oil gasification, and carbureted water gas methods during various periods of operation. After operations ceased, the plant was maintained for stand-by production purposes until about 1955. Plant facilities were demolished between 1955 and 1960, with the exception of the booster house, which was demolished in December 2008. Although the property remained vacant, Illinois Power, a predecessor of Ameren Illinois,

maintained ownership of the property until 1979 when it was sold to the American Legion. Illinois Power repurchased the property from the American Legion in 1991 after preliminary environmental investigations indicated the presence of MGP related impacts at the site. The site is currently owned by Ameren Illinois.

Past site features included the former gas plant and associated buildings, three tar wells, two gas holders (GH-1 and GH-2) and two oil tanks located on the northern portion of the site. The former booster house, a third gas holder (GH-3) three purifiers, and seven oil tanks were located on the southern portion of the site. Historical site features are illustrated in Figure 1-3.

1.3.1 Recognized Environmental Concerns

The analytical data set collected during the investigation activities were compared to the IEPA Tier 1 RO values, non-TACO or provisional ROs, Groundwater Quality Standards, and accepted background levels as an initial screening. Based on this evaluation, the exposure routes of concern were:

- The soil ingestion route for residential, industrial/commercial and construction worker scenarios;
- The soil inhalation route for residential, industrial/commercial and construction worker scenarios;
- The soil component to groundwater ingestion route; and
- The groundwater ingestion route.

Constituents of concern (COC) identified during site investigation activities are listed in Table 1-1.

1.4 Site Setting

The following sections provide a brief description of the site setting to include the physiographic setting, the site topography, the regional geology, and the site-specific subsurface hydrogeology. A more detailed description of the site setting was presented in the CSIR.

1.4.1 Regional Setting

Champaign County in Illinois is situated within the Bloomington Ridge Plain in the Till Plains section of the Central Lowland Physiographic Province. The landscape is characterized by widely spaced continental glacial moraines with nearly featureless ground moraine plains. The geology beneath Champaign County has been summarized as 100 to 400 feet (ft) of Wisconsinan, Illinoian,

and Kansan glacial drift deposited on Paleozoic bedrock which dips eastward and southward toward the Illinois Basin.

The Illinois American Water Company (IAWC) supplies water from water wells located in the west well field located about three miles west of the site. These wells average about 310 feet in total depth and have between 50 and 100 feet of screen. The wells in the west field produce water from the Mahomet Sand Member. IAWC also has water wells in the north well field located about 1.0 mile northeast of the site. These wells average about 210 feet in depth with screens ranging from 10 to 50 feet in length. The wells produce water from the middle sand and gravel aquifer in the Glasford Formation.

1.4.2 Site Topography

The site is mostly flat with isolated sloped areas along the east side where Sixth Street was formerly located. The property drainage is generally toward the northeast. No surface bodies of water are present on the site. The nearest surface water is Boneyard Creek located approximately 1,000 feet southwest of the site.

1.4.3 Subsurface Geology

The major geologic units present at the site; in descending order, are the surficial fill layer, the weathered till unit (Wedron), the unweathered till unit (Wedron), and the lower silty sand member of the Glasford Formation. A brief description of each unit is described further in this section. Additional detail on the subsurface geology of the site can be found in the CSIR.

The surficial fill layer is typically three to four feet thick and covers the entire site. The fill consists of gravelly silt and sand, with cinders, bricks, and debris. Much of the fill was placed on the site after demolition of the MGP facilities.

The first natural subsurface material encountered is a weathered till unit. The unit is continuous beneath the site and is believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. The Weathered Till Unit was contacted at various depths beneath the site. The unit averages 10 to 15 feet thick beneath the site. The Weathered Till Unit is comprised of brown to gray silty clay with some oxidation evident along clay fractures.

The Unweathered Till Unit is also believed to be part of the Batestown Till Member of the Wisconsinan Wedron Formation. The unit is generally differentiated from the Weathered Till Unit by the gray color and lack of weathering along fractures. The Unweathered Till was encountered at depths ranging from 9 to 20.5 feet Below Ground Surface (BGS).

Three deep boreholes drilled during the Phase 2 investigation encountered thick sand, silty sand, and gravel units at depths below 100 feet. These deeper deposits are believed to be the upper units of the Illinoisan Glasford Formation.

1.4.4 Site Hydrogeology

The following paragraphs provide a brief description of the groundwater bearing units and the groundwater flow conditions at the site. groundwater bearing units consist of shallow, intermediate, and deep systems. A more detailed description of the site hydrogeology is presented in the CSIR.

The shallow groundwater system at the site is an unconfined water-bearing zone with the saturation depth (water table) found in the surficial fill layer or the uppermost till unit. Shallow groundwater is monitored by a network of nineteen wells located on and around the remediation site. Groundwater in the shallow system beneath most of the study area generally flows in a somewhat radial pattern from the site. Depth to the shallow groundwater system typically ranges from 3 to 10 feet bgs.

Slug testing was performed on five of the shallow groundwater monitoring wells in June of 2011. The hydraulic conductivity results of the June 2011 testing ranged from a low of 2.6 x 10⁻⁶ cm/sec at well UMW-109 to a high of 9.6 x 10⁻⁵ cm/sec at well UMW-107, with a geometric mean value for all five wells of 3.1 x 10⁻⁵ cm/sec. The shallow groundwater meets the IEPA definition of Class II groundwater. Additional information regarding the slug testing performed at the site is included in Section 4.9 of this report.

The intermediate groundwater system is monitored by a network of nine wells located on and around the remediation site. Depth to the intermediate groundwater system typically ranges from 27 to 31 feet bgs. Slug testing was performed in four of the eight intermediate wells (UMW-301, UMW-302, UMW-303, and UMW-304) during the off-site investigation in 2008. The horizontal hydraulic conductivity values ranged from 2.80 x 10⁻² centimeters per second to 8.63 x 10⁻² centimeters per second. The mean hydraulic conductivity calculated using data from the four wells was 4.85 x 10⁻² centimeters per second or 137.5 feet per day. The intermediate groundwater meets the IEPA definition of Class I groundwater. Groundwater generally flows in a southeast direction.

The deepest groundwater system that has been monitored at the site is a sand and gravel zone within the Lower Glasford Formation beginning at a depth of about 151 feet bgs to a depth greater than 177 feet bgs. The sand and gravel layers encountered in this zone were much thicker and laterally continuous than the silty sand and sand units encountered in the weathered and unweathered till units. The water levels for the three wells screened in this

5

zone stabilized at depths of approximately 120 feet bgs. The regional gradient is the west-southwest. The deep groundwater monitoring wells were monitored from 1992 to 1998 and were abandoned in 1999.

Prepared For: Ameren Illinois

Prepared By: PSC Industrial Outsourcing, LP

2 EXTENT OF SUBSURFACE IMPACT

The following subsections present a summary of the extent of impact identified onsite during the investigation activities conducted in 2004 and 2008, prior to the remediation activities.

2.1 Tier 1 Evaluation

The analytical results from soil and groundwater samples were compared to the Tier 1 ROs set forth in IAC Section 742 and the non-TACO ROs published by the IEPA for all potential exposure routes and property use scenarios. The comparison of the investigation data established an approximate extent of subsurface impact for the site, which is discussed in the following sections. Figure 2-1 illustrates the horizontal extent of impact as determined through site investigation activities.

2.1.1 Soil Ingestion Exposure Route

Exceedances for the soil ingestion exposure route were identified at locations covering the extent of the site. The most significant levels of impact on-site were present within the former Hill Street right-of-way in areas of underground piping and on the northern portion of the site in the proximity of the former gas holders and tar structures. Fifteen COCs were identified at concentrations that exceeded the Tier 1 ROs for this exposure route. The COCs included twelve organic constituents and three inorganic constituents. Exceedances of the soil ingestion exposure route were present in surface soils (0 to 3 ft bgs), shallow subsurface soils (3 to 10 ft bgs), and deep subsurface soils (greater than 10 ft bgs) for residential, industrial/commercial, and construction worker property use scenarios.

2.1.2 Soil Inhalation Exposure Route

The laboratory analytical results for each constituent were compared to the Tier 1 ROs for the soil inhalation exposure route for residential, industrial/commercial, and construction worker property use scenarios. Seven COCs were identified at concentrations that exceed the Tier 1 ROs for this exposure pathway. The COCs included benzene, ethylbenzene, toluene, xylene, naphthalene, styrene, and mercury. Exceedances were identified for each of the potential property use scenarios.

2.1.3 Indoor Inhalation Exposure Route

All four BTEX constituents, naphthalene, styrene, and 2-methylnaphthalene were identified as COCs for the indoor inhalation exposure route for residential and industrial/commercial property use scenarios. Exceedances were identified at multiple locations across the site.

2.1.4 Soil Component to Groundwater Ingestion Exposure Route

Twenty-one organic constituents and four inorganic constituents were identified as COCs that exceeded the Tier 1 ROs for the soil component of groundwater ingestion route. The impact extended across the entire site in all depth intervals with the most significant impact in deep subsurface soils.

2.1.5 Groundwater Ingestion Exposure Route

Groundwater has been monitored at the site on a quarterly basis since 1999. Analytical results from the samples collected during the quarterly events were compared to Class I groundwater standards. Based on the comparison, twenty COCs were identified in groundwater. The COCs included benzene, ethylbenzene, toluene, twelve Polynuclear Aromatic Hydrocarbons (PNAs) constituents, iron, nickel, manganese, lead, and cyanide.

3 REMEDIATION OBJECTIVES

A Remedial Objectives Report (ROR) for the site was developed and submitted to the IEPA in December of 2008. The ROR was developed based upon the premise that shallow groundwater would prevent excavation of impacted soil at depths greater than 10 feet bgs. Therefore, the original ROR proposed excavating to 10 feet bgs and utilizing ISCO to address remaining soil impact at depths greater than 10 feet. Soil impact that could not be excavated or remediated through ISCO techniques would be addressed through institutional controls and/or engineered barriers. Ameren Illinois elected to use the most stringent Tier 1 ROs for soil ingestion and inhalation or the IEPA accepted background levels for metropolitan statistical areas as the project remediation objectives. The project remedial objectives are presented on Table 3-1.

Following the initiation of field activities, it was determined that groundwater could easily be controlled. Groundwater entering the excavation was pumped into on-site storage tanks, which allowed the excavation to proceed to depths of approximately 16 to 28 feet bgs while still maintaining dry working conditions. Therefore, the excavation areas were dug to the maximum extent achievable within the limits of the equipment and personnel safety. An Addendum to the ROR was submitted in September of 2010 to include deeper excavation of up to 28 feet bgs and the use of ISCO and/or Tier 2 evaluations to address remaining impacted soil. The extent of the remedial action excavation is depicted in Figure 3-1.

Prepared For: Ameren Illinois

Prepared By: PSC Industrial Outsourcing, LP

4 **REMEDIAL ACTIONS**

The following sections provide a summary of the remedial activities performed for the site during 2009 through 2011. A summary of investigations and remedial actions conducted prior to 2009 was provided in the CSIR.

Beginning in early May 2009, Ameren Illinois met with the community leaders to discuss the upcoming project and address any concerns or questions. Preparations and project initiation began in mid May 2009 and included but was not limited to the following:

- conducting a property boundary survey;
- providing notifications and fact sheets to members of the neighborhood, the community, and the city;
- re-locating overhead utilities;
- constructing a temporary tent structure over the remediation area;
- establishing an operational and support area for the remediation activities;
- establishing exclusion areas to limit access for remediation areas to remediation personnel only;
- contacting utility locating services and identifying buried utilities; and
- initiating an ambient air monitoring program.

Excavation of impacted soil began on the Ameren Illinois property on June 24, 2009.

4.1 Site Remediation Phases 1 through 9

Remedial activities progressed in nine phases, each of which were completed beneath an enclosed tent structure, approximately 40 meters by 65 meters in size. locations of each phase are illustrated on Figure 4-1. Each phase was treated as a separate excavation; therefore the excavation depths and extents varied depending upon soil conditions and tent positioning. Figure 3-1 illustrates the excavation extents.

An on-site field geologist provided sampling and oversight of the soil removal activities throughout the remedial actions. A grid system was utilized for sampling during each phase that followed the orientation of the tent. The geologist monitored the subsurface conditions and directed the remediation site supervisor as to the limits of the excavation. The on-site geologist made observations, documented the field activities, and directed additional over-excavation to remove material as identified from the analytical results of confirmation samples. Daily field notes, measurements, and photo documentation were taken and are kept within the project files at the PSC Columbia, Illinois office.

March 2013

The PSC project manager and Ameren Illinois project manager made periodic inspections of the site and the remedial activities to provide additional direction as necessary to the on-site geologist and remediation site supervisor.

4.2 Tent Structure

The tent structure was approximately 65 meters by 40 meters in size and utilized four 20,000 cubic feet per minute (cfm) carbon filter air-handling units. The air handling units were used in association with the temporary tent structure to contain emissions for the work completed within the structure. The air handling units were configured to pull air from the interior of the tent through activated carbon beds prior to discharging the air into the atmosphere. The air units created a slight negative pressure within the tent structure, which maintained acceptable air quality while work proceeded within the structure and controlled the release of dust and volatile site emissions to the surrounding community.

The tent structure also consisted of two to four truck doors (depending on the phase being excavated and the positioning of the tent on the site) and two personnel doors. Soil excavation, loading, and backfilling during each of the nine remediation pahses were performed within the temporary tent structure. The doors remained closed unless trucks were entering or exiting the tent to retain the negative air pressure within the tent.

Upon completion of a remedial phase, the tent was moved to the next location in one piece using a customized dolly system, or in multiple pieces by crane.

4.3 Soil Removal and Backfilling Activities

Soil was excavated until no visual impact was observed or to the maximum extent achievable while maintaining safe working conditions. A total of approximately 187,000 tons of soil was excavated from the site. The excavation depths ranged on average from 20 to 25 feet deep. A ten-foot perimeter was maintained around the interior of the tent walls to maintain structure stability. A Caterpillar 330 and a Caterpillar 321C excavator were used for soil removal. The soil was loaded directly into 39-foot, 70 cubic yard capacity, semi-dump trailers. Trucks entered the tent structure one at a time for loading to minimize opening the doors and to maintain negative air pressure within the structure. Loaded trucks were covered and swept prior to leaving the tent structure. Excavated soil was transported by Mel Price Trucking Company to the Brickyard Landfill located in Danville, Illinois.

After soil removal activities were completed, the excavations were backfilled with clean fill material from an off-site source. Fill material consisted of either silty clay or CA-6. The silty clay was sampled and sent to a laboratory for analysis, and the results were submitted to the IEPA for approval. A copy of the sample results for the backfill are included in Appendix B. A total of approximately 170,000 tons of clean

backfill was placed onsite. Backfill was spread using a Caterpillar D4G bulldozer and compacted using a Caterpillar CP433E, sheep's-foot compactor, and a remote vibratory roller compactor. Bed ash was applied to the backfill material as necessary to obtain the correct moisture content for proper compaction. Compaction testing was conducted throughout the backfill process of each excavation prior to moving to the next remediation phase.

During the excavation of the southern portion of Phase 1, a tar structure was encountered near the southeast corner of the tent. The tar structure was located in an area of underground piping between former gas holder GH-3 and the booster house. The contents of the structure appeared to be source material. The contents of the tar structure were removed, blended with bed ash and soil, and loaded into semi-dump trucks to be transported to a hazardous waste landfill operated by Waste Management, Inc. in Emelle, Alabama. Approximately 334.66 tons of material from the tar structure was sent to Emelle.

4.4 Perimeter Excavations

The utilization of the enclosed tent structure precluded excavating to the remediation site boundary; therefore following the completion of the nine phases of excavation using the tent structure, excavation of the site perimeter (approximately 10-25 feet in width) was completed. The perimeter excavations were separated into six areas that included the entire northern and western boundaries and a portion of the southern and eastern boundaries as shown in Figure 4-1. The tent structure was not necessary for the shallow perimeter soil excavations as confirmed by continuous air quality monitoring; therefore, the perimeter excavation areas were conducted in "open air." The perimeter excavations were completed to a depth of three feet bgs, with the exception of Area 2 located in the area of the former oil tanks, which was excavated to a depth of 10 feet bgs. Figure 4-1 illustrates the perimeter excavation areas and sample locations.

The site geologist collected soil confirmation samples approximately every 25 linear feet from the exterior walls of the perimeter excavation areas. Soil confirmation samples were also collected from the excavation floor in perimeter Area 2. The perimeter excavations were closely monitored for air quality and odors, and were backfilled immediately following sample collection. Concover, a substance comprised of paper mulch and water, was sprayed into the excavations and on top of soil to control dust and odors as needed.

4.5 Ambient Air Monitoring

An ambient air monitoring program was initiated to provide protection for the remediation workers and the residences in the surrounding community. Ambient air monitoring was performed by PSC. A short summary is provided below.

Six perimeter air monitoring stations (AMS) identified as AMS-1 through AMS-6 were placed at intervals along the perimeter fence line at the locations. Time-integrated air samples were collected from the AMS every 72 hours and submitted to the laboratory for analysis. Samples were analyzed for BTEX using USEPA Methods TO-15, PNAs using USEPA Method TO-13A, and particulates (PM-10). PM10 sampling and analysis was performed in accordance with EPA Method 40 CFR, Part 50, Appendix M – "Reference Method for Determination of Particulate Matter as PM10 in the Atmosphere."

Real-time ambient air monitoring was performed hourly at 25 locations around the perimeter of the site. Measured concentrations from a MiniRAE 3000[®] PID and a Dusttrak[®] II Aerosol Monitor were recorded on field data sheets.

Additional details and analytical results for the ambient air monitoring program are available in the *Remedial Action Ambient Air Monitoring Report* prepared by PSC and submitted under separate cover to the IEPA.

4.6 Wastewater Treatment

Water that collected within the excavation was pumped into on-site storage tanks and treated prior to being discharged into the sanitary sewer line. The wastewater treatment system was permitted in accordance with IEPA and City of Champaign requirements and consisted of a series of storage/settling tanks, bag filters, activated carbon, oil/water separator, and associated piping. Samples of the treated water were collected and analyzed to ensure compliance with the discharge permit. After the wastewater analytical results confirmed permit compliance, the water was discharged in 20,000-gallon batches into the Urbana-Champaign Sanitary District sanitary sewer line. A total of approximately 1.9 million gallons of treated wastewater was discharged during the remedial actions. Wastewater analytical results are included in Appendix A.

4.7 Confirmation Soil Sampling

4.7.1 Remediation Phases 1 through 9

Soil confirmation samples were collected at regular intervals using a grid pattern. Samples were collected from the excavation walls at intervals of 25 feet. Each wall sample set consisted of three sample depths: 0 to 3 feet, 3 to 10 feet, and greater than 10 feet bgs. Excavation floor samples were collected every 50 feet according to the grid system. A total of approximately 374 samples were collected during the site remediation.

In addition to soil confirmation samples, the clay backfill was sampled and sent to a laboratory for analysis. The analytical results that were submitted to the IEPA for approval prior to placement in the excavations are included in Appendix B.

Due to OSHA excavation safety regulations and for the safety of the geologist, the soil confirmation samples were collected directly from the excavator bucket. The geologist directed the excavator operator to the location of the samples and collected depth measurements for the sample locations. Each confirmation sample was observed for potential impact prior to being placed into sample jars. Field data was recorded on field data sheets.

Soil samples were collected and analyzed for BTEX, VOCs, PNAs, SVOCs, total cyanide, amenable cyanide, and RCRA metals. A percentage of soil samples were also analyzed for pH, Total Petroleum Hydrocarbons (TPH), PCBs, pesticides, and herbicides. Soil samples collected for VOCs analysis used USEPA Method 5035. A portion of the soil was retained using a sampling syringe provided by the laboratory. After collection of the sample, the soil was immediately ejected into 40-ml sample vials provided by the laboratory. Each 40-ml vial contained the appropriate quantity of preservative as pre-measured by the laboratory. Each jar was immediately sealed and placed in a cooler packed with ice.

Sampling procedures for PNAs, SVOCs, cyanide, and RCRA metals followed SW 846. Soil collected for sampling was placed in 8-ounce sample jars provided by the laboratory. Soil was placed in the jar with minimal disturbance. The laboratory was provided with sufficient quantities for analysis. Each jar was immediately sealed and placed in a cooler with ice. A sample summary for Phases 1 through 9 is presented in Table 4-1.

The field geologist used disposable, surgical gloves for handling all soil samples. To minimize the potential for cross-contamination, the gloves were discarded between sample locations.

Labels were affixed to each sample jar. Each sample was given a unique sample identification based on the remediation phase, sample location on the grid, floor or wall location, and sample depth. For example, P1-A1-W (3) represents a sample where "P1" represents the first remediation phase, "A1" represents grid location A1, "W" represents a sample collected from the excavation wall, and the (3) represents a depth of 3 feet bgs. The soil samples were submitted to Teklab and analyzed for VOCs using USEPA Method 8260, SVOCS using USEPA Method 8270, and PNAs using USEPA Method 8270 SIMS. The samples were also analyzed for inorganics using various USEPA Methods.

All confirmation soil sample results were compared to the project ROs established in the ROR and RAP. A discussion of the analytical results is presented in Section 5 of this report.

4.7.2 Perimeter Areas 1 through 6

Each perimeter area was evaluated based upon the analytical results from wall samples collected during Phases 1 through 9. The COCs for each perimeter area were identified and the soil samples collected were only analyzed for the identified COCs. Table 4-2 presents a summary of the analyses performed for the perimeter soil samples.

The field geologist collected soil samples approximately every 25 feet in the perimeter excavation areas. Each soil sample was placed into a jar provided by the laboratory and given a unique sample identification based upon the sample location and depth. For example, PA1-01 (3) represents a sample where "PA1" was Perimeter Area 1, "01" was the first sample collected from the area, and (3) was a depth of three feet bgs.

The soil samples were submitted to Teklab Inc. for analysis. The soil samples that were analyzed for VOCs used USEPA Method 8260, SVOCS used USEPA Method 8270, and PNAs used USEPA Method 8270 SIMS. Some samples were also analyzed for inorganics using various USEPA Methods. Samples were only analyzed for constituents that were found to exceed a Tier 1 RO in the confirmation wall samples collected during the nine remediation phases.

4.8 In-Situ Chemical Oxidation (ISCO) Pilot Study

An ISCO pilot study was conducted on-site by XDD, from Quakertown in Pennsylvania, to determine the feasibility of treating impacted soil using in-situ chemical oxidation. Eighteen temporary injection wells composed of one-inch PVC were installed on the northwest corner of the site within a 30' by 30' grid, as illustrated on Figure 4-2. Nine of the wells were screened at a depth of 10 to 15 feet bgs and nine wells were screened at 17 to 27 feet bgs to correspond with the depths of impact identified during site investigation activities.

XDD selected an alkaline activated persulfate (AAP) solution for the pilot study. The AAP method involves the activation of a sodium persulfate oxidant by adjusting the pH of the aquifer to alkaline conditions. The activation of the persulfate results in the formation of an oxidant that is capable of reducing contaminants in-situ.

The pilot injection was completed on July 17, 2009. A total of approximately 8,763 gallons of alkaline activated persulfate solution was injected into the temporary wells on-site. Approximately 1,302 gallons were injected into the shallow wells and 7,461 gallons were injected into the deep wells. Some of the oxidant that was injected into the shallow wells came up onto the ground surface rather than spreading out beneath the surface as intended. Injections into the deeper wells appeared to have greater subsurface distribution than the shallow wells.

Two post-injection monitoring events were conducted on July 24, 2009 and August 6, 2009 to determine the reactivity of the injected oxidant. The pH and persulfate remained elevated in several wells during the first monitoring event. The persulfate was fully reacted during the second monitoring event.

Post-injection soil sampling was conducted following the ISCO injection to determine the effectiveness of the oxidant in on-site soils. The results of the sampling are discussed in the following paragraphs.

4.8.1 Pilot Study Analytical Results

Soil Essentials Company, from New Glarus in Wisconsin, was contracted to advance three probeholes using a Geoprobe outside the western tent wall (Phase 2) within the ISCO pilot study area. Of the 30 ft by 30 ft study area, approximately 12.5 feet were located outside of the tent structure. Soil Essentials advanced probeholes in the approximate vicinity of the original locations IW-PT-201, IW-PT-205, and IW-PT-207. The locations are illustrated on Figure 4-2. Two soil samples were collected from each probehole for comparison to samples collected prior to the ISCO injections. Mike Mullins of the IEPA Champaign Field Office was on-site to split samples for additional analysis.

The original sample IW-PT-201 (11.5-12.5 ft bgs) was collected on April 6, 2009 prior to the ISCO injections. The sample contained exceedances for three of the four BTEX compounds and seven PNA constituents. The post-ISCO sample collected by PSC on December 2nd at a depth of 12-12.5 ft bgs contained exceedances of two BTEX constituents and naphthalene. The IEPA split sample (collected from 11-12 ft bgs) contained exceedances of six PNA constituents.

The pre-ISCO sample IW-PT-201 (18-19 ft bgs) was collected on April 6, 2009. Benzene was the only constituent that exceeded Tier 1 ROs. The post-ISCO sample and IEPA split sample did not contain concentrations of any constituents that exceeded Tier 1 ROs.

Sample IW-PT-205 (12.5-13.5), collected on April 6, 2009 prior to the ISCO injections, contained exceedances for three of the four BTEX constituents and ten PNA constituents. Concentrations of two constituents, benzene and naphthalene, exceeded Tier 1 ROs in the post-ISCO sample. The IEPA split sample contained only one exceedance for naphthalene.

The pre-ISCO sample IW-PT-205 (17-18 ft bgs) and the post-ISCO sample IW-PT-205B (17-18 ft bgs) both contained benzene concentrations in

exceedance of Tier 1 ROs. The IEPA split sample was not analyzed for the BTEX constituents. No PNA exceedances were identified in either sample.

Pre-ISCO sample IW-PT-207 (13-14 ft bgs) contained concentrations of BTEX and ten PNA constituents that exceeded Tier 1 ROs. The post-ISCO sample IW-PT-207 (13-14 ft bgs) contained exceedances for the same ten PNA constituents as the pre-ISCO sample. Benzene and xylene concentrations also exceeded Tier 1 ROs.

The original sample IW-PT-207 (18.5-19.5 ft bgs) and the post-ISCO sample IW-PT-207B (18.5-19.5) contained a benzene concentration in exceedance of Tier 1 ROs. The benzene concentrations for both samples were identical.

The results of the pre- and post-ISCO soil samples indicated a reduction in the contaminants identified in site soils. Based on these results, the ISCO oxidants were used to treat the excavation floors in Phases 2, 3, and 4 to reduce the concentrations of contaminants in the soil that could not safely be excavated. The results of the pilot study are included in Appendix C.

4.8.2 ISCO Application to Excavation Floors

Following the completion of the ISCO pilot study, chemical oxidant was applied to excavation floors during remediation Phases 2, 3, and 4 as an additional remedial measure. The oxidant was intended to reduce potential impact remaining at depths below what could feasibly be excavated.

4.9 **Groundwater Monitoring Well Abandonment, Installation,** and Field Hydraulic Conductivity Testing

Groundwater monitoring wells located within the remediation area were abandoned during excavation activities. Replacement wells were installed following the completion of remedial activities to evaluate the effectiveness of the remedial actions on groundwater impact. Two new wells and one replacement well were also installed to the southwest of the remediation site to delineate the cyanide impact in that area. Figure 4-3 illustrates the groundwater monitoring well locations.

Many of the monitoring wells from the 1990 field hydraulic conductivity testing were no longer in use; therefore, additional field hydraulic conductivity testing was completed in June 2011. The following paragraphs present details of the monitoring well abandonment, installation, and hydraulic conductivity testing activities that were performed on the site.

4.9.1 Groundwater Monitoring Well Abandonment and Installation

The following groundwater monitoring wells were removed during remedial activities: UMW-113, UMW-114, and UMW-115 located in the southern half of the site; wells UMW-104 and UMW-110 located in the former 6th Street right-of-way which was included in the remediation site boundaries; and UMW-304 located near the center of the remediation site. Each monitoring well was abandoned according to the IEPA and Department of Health requirements. Copies of the well abandonment forms are included in Appendix D.

Three groundwater monitoring wells were installed to the west of the site between February 2-3, 2010. Monitoring well UMW-106R was installed along the 5th Street right-of-way to replace UMW-106 that was removed during a water main replacement conducted by the City of Champaign in 2009. Monitoring well UMW-123 was also installed within the 5th Street right-of-way south of Hill Street. Monitoring well UMW-122 was installed between UMW-106R and UMW-123 in the alley south of Hill Street. Each of the three new monitoring wells were installed to monitor shallow groundwater and provide further delineation of the extent of cyanide impacts in groundwater southwest of the site. These wells have been included in the quarterly groundwater monitoring program.

Seven new monitoring wells, installed on-site during June and July 2012, were sampled for the first time in September 2012. The four new shallow monitoring wells, designated UMW-124 through UMW-127, were installed to depths between 15 and 16 feet below grade. The three new intermediate monitoring wells, designated UMW-301R, UMW-304R, and UMW-308, were installed to depths between 45 and 47 feet below grade. These seven new wells were installed to replace and supplement four shallow and two intermediate depth monitoring wells that were removed as a result of on-site remedial activities.

The wells were constructed of two-inch diameter PVC well screens and risers, with well screen slot size of 0.010 inches and ten feet in length. The annular space was backfilled with sand pack to two feet above the top of the screen. A bentonite seal was placed above the sand pack. Each well was completed with a flush mount well protector.

The new groundwater monitoring wells were installed by Terra Drill Inc., of Dupo, Illinois. Terra Drill utilized a truck mounted drill rig (CME-75) equipped with hollow stemmed 4.25 inch diameter augers to advance the soil borings and set the monitoring wells. A 6-inch diameter threaded schedule 40 PVC protective casing was installed in the intermediate well locations to prevent any potential soil impact from below the excavation backfill from entering the intermediate depth groundwater zone. The casing was grouted in place from the ground surface to immediately below the surface casing bottom.

The shallow depth monitoring wells were constructed using a 5 foot, two-inch diameter schedule 40 PVC riser, with 10-foot screens. Clean silica sand was installed in the annular space to approximately two feet above the top of the well screen. A bentonite seal was installed above the sand pack, and the wells were finished with flush-mount well protectors.

The intermediate depth monitoring wells were constructed within the ground surface casing using two inch diameter schedule 40 PVC riser, with 10 foot screens. The sand pack extended to two feet above the sand pack, followed by a bentonite seal, and flush-mount well protector similar to the shallow depth wells.

Each well was developed following installation. Development consisted of purging five well casing volumes or until the field measurements of pH, specific conductivity, temperature, and dissolved oxygen stabilize. The wells installed in June-July 2012 were sampled for the first time during the third quarter of 2012.

4.9.2 Field Hydraulic Conductivity Testing

Initial field hydraulic conductivity testing was performed on the shallow geologic materials on-site during the Phase II Site Investigation by Burlington Environmental, Inc. in 1990. The tests resulted in an overall mean hydraulic conductivity of 1.6 x 10⁻⁴ centimeters per second (cm/sec). Since the original hydraulic conductivity tests were performed in 1990 and only two of the original shallow monitoring wells tested at that time were still in existence in 2011, additional field permeability testing was conducted in June 2011. Insitu permeability tests were performed on five monitoring wells – UMW-102, UMW-107, UMW-108, UMW-109, and UMW-116.

The monitoring wells were tested by the variable head ("slug") test method. The test methods utilized were modifications of the slug test method described by Cooper et al. (1967), whereby a solid slug is lowered or raised into the saturated portion of the well column, and measuring the resulting change in water level with time. The slug tests at the site were conducted using two, three, and four foot long by 1-1/4 inch diameter PVC slugs with rope and recorded using Aquistar PT2X Smart Sensors (PT2X) with 15 and 50 pounds per square inch (psi) transducers. In most cases, multiple tests were performed on each well because of the variability inherent in groundwater level recoveries when a slug is inserted versus removed from a well and to provide corroborating data. The field data collected and downloaded from the PT2X sensors is provided in Appendix E.

A laptop computer was used to download the data from the dataloggers and analyze the data with the use of AQTESOLVTM for Windows (Version 4.50.002), an aquifer test analysis software package by HYDROSOLVE.

Two analytical solutions were utilized on the data: the Bouwer-Rice method (1976) for unconfined aquifers and the KGS Model with Skin for unconfined aquifers (Hyder et al., 1994). The AQTESOLVTM output data sheets are included in Appendix E.

The results from both the 1990 and 2011 field permeability testing of the uppermost (shallow) wells at the site are provided in Appendix E. The hydraulic conductivity results of the June 2011 testing of the five shallow wells ranged from a low of 2.6 x 10⁻⁶ cm/sec at well UMW-109 to a high of 9.6 x 10⁻⁵ cm/sec at well UMW-107, with a geometric mean value for all five wells of 3.1 x 10⁻⁵ cm/sec. The overall geometric mean hydraulic conductivity for the June 2011 tests is very comparable to the geometric mean of the 1990 tests. The hydraulic conductivity testing indicates the groundwater within the uppermost geologic materials in the vicinity of the site unconditionally meet the definition of Class II – General Resource Groundwater for the purposes of establishing Tier 1 remediation objectives. Therefore, groundwater analytical evaluations in subsequent sections of this report are based upon comparison to Tier 1 groundwater remediation objectives for Class II groundwater.

The results of the field hydraulic conductivity testing were submitted to the IEPA in a report titled *Groundwater Monitoring Update – Quarter 2 2011 Sampling Event and Shallow Groundwater Classification Field Hydraulic Conductivity Testing*. In a letter dated August 30, 2011, the IEPA approved the report and the classification of shallow groundwater as Class II. The intermediate aquifer is still classified as a Class I aquifer.

Prepared For: Ameren Illinois

Prepared By: PSC Industrial Outsourcing, LP

5 CONFIRMATION SAMPLE ANALYTICAL RESULTS

The following sections present an evaluation of the analytical results of the soil confirmation samples collected from the excavation walls and floors, including the samples collected from beneath the tent structure and those collected from the open air perimeter excavations.

Soil confirmation samples were compared to Tier 1 ROs presented in the ROR and RAP. The Tier 1 comparison revealed impact at concentrations greater than Tier 1 ROs in samples collected from excavation floors and walls. Soil analytical results are presented in Tables 5-1 through 5-12.

5.1 Phases 1 through 9 Analytical Results

Samples were collected from excavation floors and walls during each of the nine phases and were given unique sample identification numbers for each phase. The sample analytical results are presented in Tables 5-1 through 5-8. The laboratory analytical reports are included in Appendix F. A discussion of the analytical results for the confirmation wall and floor samples is presented below.

5.1.1 Confirmation Wall Samples

Confirmation wall samples with COC concentrations in exceedance of Tier 1 ROs were identified along the 5th Street boundary, in the area formerly containing the retorts, purifying room, condensing room, and piping. Confirmation wall samples collected along the northern property boundary, in the location of coal storage areas along the railroad right-of-way, were also found to contain COCs above Tier 1 ROs. The area along the southern property boundary that formerly contained oil tanks was also identified to contain COCs at concentrations above Tier 1 ROs in the wall samples collected in that area. Confirmation wall samples found to exceed one or more Tier 1 ROs are shown in Figures 5-1 through 5-3. Analytical results for the confirmation wall samples are found in Tables 5-1 through 5-4.

The areas with the highest levels of soil impact are located in the northwest corner of the site. Soil impact was identified in wall samples along the western boundary from approximately Hill Street, north to the property boundary. Field observations along the western property boundary were consistent with impact typically associated with former MGP operations. Soil impact also remained along the northern property boundary. Field observations of the soils along the railroad right-of-way indicated the presence of railroad ties and a creosote-like substance and odor, especially within the 0 to 3 foot depth interval.

5.1.2 Confirmation Floor Samples

Soil impact in exceedance of Tier 1 ROs was identified in excavation floor samples as shown on Figure 5-3. The highest impact was identified in the Phase 2 excavation, which was in the area of the former gas holders. Sample P2-D4-F (22) had a benzene concentration of 133 mg/kg and a naphthalene concentration of 223 mg/kg. All of the BTEX constituents were identified to exceed one or more Tier 1 RO, in addition to six PNA constituents. Analytical results for the confirmation floor samples are found in Tables 5-5 through 5-8.

5.2 Perimeter Excavation Analytical Results

The perimeter excavations were separated into six areas as presented in Figure 4-1. The analytical results are found in Tables 5-9 through 5-12 and Appendix G. Seven wall samples at a depth of three feet bgs were collected from perimeter Area 1, located near the center of the southern property boundary. Three samples contained exceedances of one or more PNA constituent. Methylene chloride was detected above Tier 1 ROs in one wall sample in Area 1. Three wall samples contained mercury concentrations in exceedance of the construction worker inhalation exposure pathway and two samples identified arsenic above residential and commercial ingestion Tier 1 ROs.

Perimeter Area 2 was located in the southwest corner of the site. Twelve soil samples were collected from the excavation area, including ten from the walls and two from the floors. Two of the twelve soil samples collected from Area 2 contained concentrations of COCs above Tier 1 ROs. Sample PA2-01B (3) collected at 3 ft bgs from the excavation wall had mercury that exceeded the construction worker inhalation and soil component of groundwater ingestion exposure pathways. Sample PA2-01A (10) collected at 10 ft bgs from the excavation floor had a methylene chloride concentration in exceedance of the soil component of the groundwater ingestion exposure pathway.

Perimeter Area 3 consisted of the majority of the western property boundary. Twelve confirmation samples were collected from the excavation wall. Five of the twelve samples were identified to exceed one or more Tier 1 RO. Sample PA3-05(3) was located in the former Hill Street right-of-way. One exceedance of the residential ingestion exposure pathway for benzo(b)fluoranthene was identified in the sample. The remaining four samples were located on the northwestern portion of the site boundary. Two of the four samples contained exceedances for benzene and all four contained exceedances of at least four PNA constituents.

Perimeter Area 4 consisted of a portion of the northern property boundary. Seven soil confirmation samples were collected from the excavation wall. All seven of the Area 4 samples were identified to exceed one or more Tier 1 RO. Five or more PNA constituents were identified to exceed Tier 1 ROs in each of the seven wall samples.

Five samples were also identified to have benzene exceedances and two had total xylene exceedances. Carbazole, dibenzofuran, and 2-methylnaphthalene were also identified to exceed Tier 1 ROs in Area 4 soil samples.

Perimeter Area 5 consisted of the majority of the northern property boundary. Fourteen soil confirmation samples were collected from the excavation wall. Ten of the fourteen samples were identified to exceed one or more Tier 1 RO. Five samples contained exceedances of at least one BTEX constituent and five or more PNA constituents. 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, methylene chloride, 2methylnaphthalene, dibenzofuran, mercury, and naphthalene in exceedance of Tier 1 ROs were also identified in Area 5 soil samples. The highest levels of impact that were above Tier 1 ROs were identified in samples PA5-12 (3) and PA5-13 (3).

Perimeter Area 6 consisted of the northeast corner of the property which was formerly the 6th Street right-of-way. Four soil confirmation samples were collected from the excavation wall in Perimeter Area 6, two of which were identified to exceed one or more Tier 1 RO. Samples PA6-2 (3) and PA6-3 (3) had concentrations of at least four PNA constituents above Tier 1 ROs. PA6-3 (3) also contained an arsenic exceedance above the Tier 1 ROs for residential and commercial ingestion and soil component of groundwater ingestion.

5.3 **Evaluation for Soil Attenuation**

Soil samples collected from the excavation floors during each of the nine remediation phases were evaluated for soil attenuation. The sum of the organic compounds was calculated for each sample that included the full list of VOCs, SVOCs, and PNAs. To be conservative, 50% of the detection limit was used for constituents that were not detected. Soil samples were also analyzed for TPH (OA-2) using method 3550B/8015B for diesel, kerosene, mineral spirits, and motor oil. The sum of the organic compounds and TPH were compared to the site specific fraction organic carbon content (f_{oc}) of 10,400 mg/kg for the greater than 10 foot depth interval. The comparison is presented in Table 5-13.

The sum of organic compounds calculated for soil confirmation sample P2-D4-F (22) was 16,911.42 mg/kg, which exceeded the site specific f_{oc} value. The total TPH for the sample was 3,359 mg/kg which is below the site specific f_{oc} value. This location will be addressed using ISCO injections at a minimum depth of 22 feet, and will be re-evaluated following the completion of the injection process.

The total organic compounds and TPH for soil confirmation sample P4-A1-W (20) were 73,138 mg/kg and 14,690 mg/kg, respectively. Both values exceeded the site specific f_{oc} value. Soil confirmation sample P4-A1-W (20) is located within the area proposed for ISCO treatment; therefore, this location will be addressed using ISCO and will be re-evaluated following the completion of the injection process.

Three soil confirmation samples collected from Perimeter Area 5 were also analyzed for TPH. One sample, PA5-08 (3), had a TPH result of 33, 535 mg/kg. The TPH value was in exceedance of the site specific f_{oc} value of 23, 200 mg/kg for the 0 to 3 foot depth interval. Perimeter Area 5 is also located within the proposed ISCO treatment area, and will be re-evaluated following the completion of the ISCO activities.

5.4 Groundwater

Groundwater at the site is monitored by a network of 28 monitoring wells, including nineteen shallow and nine intermediate depth wells. Four of the 28 monitoring wells sampled in the fourth quarter of 2012 had at least one MGP-related constituent exceeding Class I or II standards. Shallow well UMW-107 had benzene and cyanide concentrations in exceedance of Class II groundwater standards. Two new on-site shallow wells, UMW-124 and UMW-125, also exceeded the Class II standard for benzene. Intermediate depth well UMW-302 had benzene and naphthalene concentrations in exceedance of Class I groundwater standards. None of the remaining 15 shallow or 8 intermediate depth monitoring wells that were sampled had an exceedance of cyanide, BTEX or PNA compounds in the September 2012 event. A copy of the analytical results from the December 2012 groundwater monitoring event is included on Table 5-14.

Shallow well UMW-107 had a benzene concentration of 0.1850 mg/L in December 2012 versus a Class II groundwater standard of 0.025 mg/L. The new on-site shallow wells (UMW-124 and UMW-125) had benzene concentrations of 0.085 mg/L and 0.0299 mg/L, respectively. The long term trend in benzene concentration at well UMW-107 has been downward; however, periodic increases such as those observed in the first two quarters of 2012 are expected based on fluctuating groundwater levels.

One other well with an organic constituent exceeding groundwater standards during the December 2012 event was well UMW-302. Well UMW-302 had benzene and naphthalene concentrations of 0.385 and 4.2 mg/L, respectively. The other intermediate depth wells located downgradient of this well - UMW-305, UMW-306, and UMW-307 - have not had any exceedances in the seventeen quarterly monitoring events since first installed and monitored in mid-2008. In addition, none of the three new intermediate depth wells installed on-site in June and July 2012 (UMW-301R, UMW-302, and UMW-308), had an exceedance of any Class I standards. To address the groundwater impact in the area of UMW-302, ISCO injections will be applied onsite along the southern property boundary. The injections will be applied at depths of approximately 36 to 44 feet bgs in order to contact the intermediate groundwater system and potentially reduce constituent concentrations in monitoring well UMW-302.

6 TIER 2 EVALUATIONS

The confirmation soil sample analytical results indicated that soil impact above Tier 1 ROs has remained on-site following the excavation and disposal of impacted soils. An additional remedial action consisting of ISCO injections remains to be implemented. Once ISCO has been completed, confirmation soil samples will be collected and their analytical results will be compared to Tier 1 ROs. If there are constituents with Tier 1 RO exceedances in the soil confirmation samples, site-specific input parameters will be used to establish Tier 2 remedial objectives. Once the Tier 2 ROs have been calculated for the constituents remaining above Tier 1 ROs, the soil confirmation sample results would then be compared to the Tier 2 ROs for exceedances. After the Tier 2 RO evaluations are completed, any constituents with remaining Tier 2 RO exceedances will be addressed through institutional controls and/or engineered barriers.

7 ADDITIONAL REMEDIAL ACTIONS

Soil impact to a depth of 10 to 28 feet that could feasibly be excavated from the site was completed during the nine tent phases and the open air excavations. Soil confirmation samples collected from excavation walls around the site perimeter indicates impact remains on-site in exceedance of Tier 1 ROs. A remedial approach consisting of ISCO injections will be applied to reduce the concentrations in soils that remain on-site. ISCO will be performed in areas shown on Figure 7-1, to reduce soil contaminant concentrations in those areas. A system of ISCO injection points will be installed and a chemical oxidant will be injected into the impacted areas to reduce or eliminate the remaining impact. Soil samples will be collected following the ISCO injections to determine the effectiveness of the chemical oxidant on the remaining soil impact. The details of the ISCO treatment and soil analytical results will be discussed in a RACR which will be submitted separately at a future date.

8 EFFECTIVENESS ON ADDRESSING IMPACT

A total of approximately 187,000 tons of impacted soil was removed from the remediation site between June 2009 and September 2011. Impacted soil on the remediation site to a depth of approximately 16 to 28 feet was removed, with the exception of the soil around the perimeter of the site that was excavated to a depth of 3 to 10 feet bgs (Figure ES-1). Soil impact below the depths that could not feasibly be excavated remained in place.

Soil impact remaining in place within 10 feet of ground surface around the site perimeter, in addition to areas where contaminant concentrations exceed the attenuation of the soil, will be addressed using ISCO injections to potentially reduce the impact in those areas.

Exceedances of the Tier 1 ROs for the soil component of groundwater ingestion exposure route were identified in soil confirmation samples collected from the excavation floors. Exceedances of the soil component of groundwater ingestion exposure route in samples collected from the excavation floors will be addressed through monitoring and institutional controls. Groundwater is currently monitored with a network of 28 monitoring wells located on and around the remediation site, and will continue to be monitored following the completion of the remedial actions for a period of two years.

9 SUMMARY AND CONCLUSIONS

Soil and groundwater impact was identified on the site at 308 North 5th Street as a result of the former MGP operations on the property. Recognized environmental concerns were identified during previous activities performed at the site dating back to 1986. The extent of impact was evaluated and presented in the *Comprehensive Site Investigation Report* dated December 2007. The soil impact was present at levels that exceeded the Tier 1 ROs for all potential soil exposure routes and property use scenarios. Groundwater impact was also identified to exceed Class I and Class II groundwater standards.

Remedial actions were initiated in June 2009 to remove the impacted material from the site. Approximately 187,000 tons of impacted soil was removed and the excavations were backfilled with clean fill material from an offsite source. Soil confirmation sample results indicate that soil impact remains in place in portions of the site.

ISCO will be performed within the upper 10 feet of soil around the site perimeter, which is shown in areas on Figure 7-1, to reduce constituent concentrations in those areas. ISCO will also be performed at depths greater than 10 feet in areas where constituent concentrations exceed soil attenuation. A system of temporary ISCO injection wells will be installed and a chemical oxidant will be injected into the impacted areas to potentially reduce or eliminate the remaining impact. Soil samples will be collected following the ISCO injections to determine the effectiveness of the chemical oxidant on the remaining soil impact. The details of the ISCO treatment and soil analytical results will be discussed in a RACR which will be submitted separately at a future date.

Post-remedial action groundwater monitoring was included as part of the approved RAP dated December 2008. The post-remedial action groundwater monitoring is designed to evaluate the effectiveness of the remedial actions on subsurface impact. Groundwater sampling will be performed for two years following the completion of ISCO treatment and collection of soil confirmation samples.

10 ILLINOIS LICENSED PROFESSINAL ENGINEER REVIEW

The work performed at the Champaign property to date was completed before I assumed responsibility for site activities. However:

I have reviewed documentation of the prior investigation activities and believe the data is suitable for compliance with the Act, 35 Ill. Adm. Code 740, and generally accepted engineering practices. I attest that to the best of my knowledge and belief, the work described in this plan or report has been designed or completed in accordance with the Act, 35 Ill. Adm. Code 740, and the information presented is accurate and complete.

Signature:

Mark H. Kroenig, P.E.

Licensed Professional Engineer

Date: 3/15/20

License No. 37277

License Expiration Date: 11 30 2013

References

- John Mathes and Associates, 1990. Phase IC Preliminary On-Site Assessment, Champaign Former Manufactured Gas Plant Site, Champaign, Illinois.
- Philip Services Corporation. December 2007. Comprehensive Site Investigation Report for AmerenIP Champaign Former Manufactured Gas Plant, State ID 0190100008.
- PSC Industrial Outsourcing, LP. December 2008. Remedial Objectives Report; Former Manufactured Gas Plant; Champaign, Illinois.
- PSC Industrial Outsourcing, LP. December 2008. Remedial Action Plan; Former Manufactured Gas Plant; Champaign, Illinois.
- PSC Industrial Outsourcing, LP. September 1, 2010. Revised Remedial Objectives Report (ROR); Former Manufactured Gas Plant; Champaign, IL; State ID 0190100008
- PSC Industrial Outsourcing, LP. September 23, 2010. Revised Remedial Action Plan (RAP); Former Manufactured Gas Plant; Champaign, IL; State ID 0190100008.
- PSC Industrial Outsourcing, LP. June 1, 2011. Remedial Action Plan (RAP)Addendum; Former Manufactured Gas Plant; Champaign, IL; State ID 0190100008.
- PSC Industrial Outsourcing, LP. 2012. Groundwater Monitoring Update Quarter 4, 2012 Sampling Event, Champaign Former MGP Site, Champaign, Illinois.

List of Tables

Table Number	Table Name
1-1	List of Constituents of Concern
3-1	Project Remedial Objectives
4-1	Confirmation Soil Sample Summary – Phases 1 through 9
4-2	Perimeter Soil Sample Summary
5-1	Soil Confirmation Sample Analytical Results For Excavation Wall - BTEX and PNAs
5-2	Soil Confirmation Sample Analytical Results For Excavation Wall - VOCs
5-3	Soil Confirmation Sample Analytical Results For Excavation Wall - SVOCs
5-4	Soil Confirmation Sample Analytical Results For Excavation Wall - Inorganics
5-5	Soil Confirmation Sample Analytical Results For Excavation Floor - BTEX and PNAs
5-6	Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs
5-7	Soil Confirmation Sample Analytical Results For Excavation Floor - SVOCs
5-8	Soil Confirmation Sample Analytical Results For Excavation Floor - Inorganics
5-9	Perimeter Soil Sample Analytical Results – BTEX and PNAs
5-10	Perimeter Soil Sample Analytical Results – VOCs
5-11	Perimeter Soil Sample Analytical Results – SVOCs
5-12	Perimeter Soil Sample Analytical Results – Inorganics
5-13	Evaluation for Soil Attenuation
5-14	Groundwater Analytical Results – December 2012

TABLE 1-1 MANUFACTURED GAS PLANT RELATED CONSTITUENTS OF CONCERN PROJECT STATUS REPORT CHAMPAIGN FORMER MGP SITE AMEREN ILLINOIS

<u>SOIL</u>

InorganicsCyanide

Metals

Chromium Lead Arsenic Mercury

Volatile Aromatics

Benzene
Ethylbenzene
Toluene
Total Xylenes
Styrene
Acetone
Methylene Chloride

Polynuclear Aromatic Hydrocarbons

Acenaphthene
Acenaphthylene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(k)fluoranthene

Chrysene

Dibenzo (a,h,)anthracene

Dibenzofuran Fluorene

Indeno(1,2,3,cd)pyrene

Naphthalene Phenanthrene

2-methylnaphthalene

GROUNDWATER

InorganicsCyanide

Metals

Iron Lead Nickel Manganese

Volatile Aromatics

Benzene Ethylbenzene Toluene

Polynuclear Aromatic Hydrocarbons

Acenaphthene Acenaphthylene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene

Chrysene Fluoranthene Fluorene Naphthalene Phenanthrene

Pyrene

2-methylnaphthalene

TABLE 3-1
PROJECT REMEDIATION OBJECTIVES
FOR CONSTITUENTS OF CONCERN
CHAMPAIGN FORMER MGP SITE
AMEREN ILLINOIS

]	ier 1 Remed	iation Objectiv	<u>ve</u>				
								<u>loor</u>	IEPA Accepted	Project
	Residential	<u>Ingestion</u> Commercial	Construction	Residential	Inhalation Commercial	Construction	<u>Inha</u> Residential	<u>lation</u> Commercial	Background Levels MSA	Remediation Objective
Notestia Compania Compania (manufactual)										
Volatile Organic Compounds (mg/kg) Benzene	12	100	2,300	0.80	1.6	2.2	0.069	0.51		0.069
Ethylbenzene	7.800	200,000	20,000	400	400	58.0	130	130		58
Toluene	16,000	410,000	410,000	400 650	400 650	42.0	240	240		36 42
Total Xylenes	16,000	410,000	41,000	410	320	5.6	63	100		5.6
Styrene	16,000	410,000	41,000	1,500	1,500	430	230	230		230
•	,	,			,					
Acetone Mathematical Charida	7,800	200,000	200,000	100,000	100,000	10,000	100,000	100,000		7,800
Methylene Chloride	85	760	12,000	13	24	34	1.4	10		1.4
Semivolatile Organic Compounds (mg/kg)										
Acenaphthene	4,700	120,000	120,000						0.13	4,700
Acenaphthylene	2,300 (1)	61,000 ⁽¹⁾	61,000 ⁽¹⁾						0.07	2,300
Benzo(a)anthracene	0.9	8	170						1.8	1.8
Benzo(a)pyrene	0.09	0.8	17						2.1	2.1
Benzo(b)fluoranthene	0.9	8	170						2.1	2.1
Benzo(k)fluoranthene	9	78	1,700						1.7	9
Chrysene	88	780	17,000						2.7	88
Dibenzo(a,h)anthracene	0.09	0.8	17						0.42	0.42
Dibenzofuran	310 ⁽¹⁾	8,200 ⁽¹⁾	820 ⁽¹⁾							310
Fluorene	3,100	82,000	82,000						0.18	3,100
Indeno(1,2,3-cd)pyrene	0.9	8	170						1.6	1.6
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	0.2	1.8
Phenanthrene	2,300 ⁽¹⁾	61000 ⁽¹⁾	61000 ⁽¹⁾			1.0			2.5	
		61,000	61,000				83	83	2.5 0.14	2,300 83
2-methylnaphthalene	2,300	61,000	61,000				83	83	0.14	83
Metals (mg/kg)										
Arsenic	13	13	61	750	1,200	25,000			13	13
Chromium	230	6,100	4,100	270	420	690			16.2	230
Lead	400	800	700						36	400
Mercury	23	610	61	10	16	0.1	0.45	0.45	0.06	0.1
Inorganics (mg/kg)										
Cyanide (mg/kg)	1,600	41,000	4,100						0.51	1,600

Notes:

mg/kg Milligrams per kilogram

⁽¹⁾ Non-TACO or provisional RO provided by the IEPA

No remediation objective has been established by the IEPA for this constituent for exposure route

Sample	Date	Teklab	BTEX	VOCs	PNA	SVOCs	RCRA	Total Cyanide	Amenable Cyanide	рН
Identification	Collected	WO Number	(8260)	(8260)	(8270 SIMS)	(8270)	Metals	(9012)	(9012)	(9045)
P1-A1-W (0-3)	6/30/2009	9061174	Χ	Х	X	Χ	X	X	X	
P1-A1-W (5-8)	6/30/2009	9061174	Χ	Χ	X	Χ	X	X	X	
P1-A1-W (12)	7/14/2009	9070651	Χ	Χ	X	Χ	X	X	X	
P1-A2-W (0-3)	6/30/2009	9061174	Χ	Χ	X	Χ	X	X	X	
P1-A2-W (5-6)	6/30/2009	9061174	Χ	Χ	X	Χ	X	X	Х	
P1-A2-W (15)	7/6/2009	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A3-W (3)	7/7/2009	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A3-W (10)	7/7/2009	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A3-W (20)	7/7/09	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A4-W (3)	7/7/09	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A4-W (8)	7/7/09	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A4-W (20)	7/7/09	9070337	Χ	Χ	X	Χ	X	X	Х	
P1-A5-W (3)	7/15/2009	9070651	Χ	Χ	X	Χ	X	X	Х	
P1-A5-W (8)	7/15/2009	9070651	Χ	Χ	X	Χ	X	X	Х	
P1-A5-W (20)	7/15/2009	9070651	Χ	Χ	X	Χ	X	X	Х	
P1-B2-F (22)	7/1/2009	9070139	Χ	Χ	X	Χ	X	X	Х	
P1-B2-F (24)	7/2/2009	9070139	Χ	Χ	X	Χ	X	X	Х	
P1-B2-F (26)	7/16/2009	9070139	Χ	Χ	X	Χ	X	X	Х	
P1-B2-F (28)	7/16/2009	9070650	Χ	Χ	X	Χ	X	X	Х	
P1-B3.5-F (24)	7/16/2009	9070650	Χ	Χ	X	Χ	X	X	Х	
P1-B3.5-F (26)	7/16/2009	9070650	Х	Х	Х	Х	Х	Х	Х	
P1-B5-F (25)	7/15/2009	9070650	Х	Х	Х	Х	Х	Х	Х	
P1-C5-F (22)	7/23/2009	9070886	Х	Х	Х	Х	Х	Х	Х	
P1-D3.5-F (25)	7/30/2009	907112	Х	Х	Х	Х	Х	Х	Х	
P1-D5-F (25)	7/30/2009	907112	Х	Х	Х	Х	Х	Х	Х	
P1-F3.5-F (20.5)	7/31/2009	9071208	Х	Х	Х	Х	Х	Х	Х	
P1-H1-F (20)	8/19/2009	9080744	Х		Х					
P1-F2-F (21)	9/9/2009	9090325	Х	Х	Х	Х	Х	Х	X	
P1-H3.5-F (20)	9/10/2009	9090415	Х	Х	Х	Х	Х	Х	X	
P1-H5-F (20.5)	9/10/2009	9090415	Х	Х	Х	Х	Х	Х	X	
P1-F5-F (20.5)	9/11/2009	9090415	Х	Х	Х	Χ	X	X	X	

- P1 Phase I Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Sample	Date	Teklab	BTEX	VOCs	PNA	SVOCs	RCRA	Total Cyanide	Amenable Cyanide
Identification	Collected	WO Number	(8260)	(8260)	(8270 SIMS)	(8270)	Metals	(9012)	(9012)
P2-A1-W (3)	10/23/2009	9100991		Χ	Χ	Χ	Χ	X	X
P2-A1-W (8)	10/23/2009	9100991		Χ	X	Χ	Χ	X	X
P2-A1-W (20)	10/27/2009	9101186		Χ	X	Χ	Χ	X	X
P2-A2-W (3)	10/27/2009	9101186		Χ	X	Χ	X	X	X
P2-A2-W (8)	10/27/2009	9101186		Χ	X	Χ	Χ	X	X
P2-A2-W (20)	10/27/2009	9101186		Χ	X	Χ	X	X	X
P2-A3-W (3)	10/26/2009	9101045		Χ	X	Χ	X	X	X
P2-A3-W (8)	10/26/2009	9101045		Χ	X	Χ	X	Х	X
P2-A3-W (20)	10/27/2009	9101186		Χ	X	Χ	Χ	X	X
P2-B1.5-F (22)	10/27/2009	9101186	Χ	Χ	X	Χ	X	X	X
P2-B2.5-F (22)	10/27/2009	9101186	Χ	Χ	X	Χ	X	X	X
P2-B4-F (22)	10/30/2009	9101273	Χ	Χ	Х	Χ	X	X	X
P2-C4-F (22)	10/30/2009	9101273	Χ	Χ	Х	Χ	X	X	X
P2-D2-F (22)	10/30/2009	9101273	Χ	Χ	Х	Χ	Х	Х	X
P2-D4-F (22)	10/30/2009	9101273	Χ	Χ	Х	Χ	Х	Х	X
P2-H1.5-F (24)	11/19/2009	9110900	Χ	Χ	Х	Χ	Х	Х	X
P2-H3.5-F (24)	11/19/2009	9110900	Χ	Χ	Х	Χ	Х	Х	X
P2-FG-1.5-F (28)	11/19/2009	9110900	Χ	Χ	Х	Χ	Х	Х	X
P2-FG-3.5-F (24)	11/19/2009	9110900	Χ	Χ	Х	Χ	Х	Х	X
P2-GH-F (17)	11/12/2009	9110535	Χ	Χ	Х	Χ	Х	Х	X
P2-E2.5-F (24)	11/25/2009	9111063	Χ	Χ	Х	Χ	Х	Х	X
P2-E4-F (24)	11/25/2009	9111063	Χ	Χ	Х	Х	Х	Х	X
P2-E4-F (30)	11/24/2009	9111063	Χ	Χ	Х	Χ	Х	Х	X

Notes:

P2 Phase 2 Tent Location

A1 Grid Sample Location

W Wall Sample

F Floor Sample

(20) Sample Depth

Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P3-A1-W (3)	1/12/2010	10010865	Х	Х	Χ	Х	Х	Х		Х	Х
P3-A1-W (10)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х		Х	Х
P3-A1-W (15)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х		Х	Х
P3-A2-W (8)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A2-W (16)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A3-W (3)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A3-W (6)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A3-W (18)	1/12/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A4-W (3)	1/13/2010	10010865	Х	Х	Х	Х	Х	Х		Х	Х
P3-A4-W (10)	1/13/2010	10010865	Х	Х	Х	Х	Х	Х		Х	Х
P3-A4-W (15)	1/13/2010	10010865	Х	Х	Х	Х	Х	Х		Х	Х
P3-B2-F (22)	1/13/2010	10010398	Х	Х	Х	Х	Х	Х	Х		Х
P3-B2-F (24)	1/13/2010	10010398	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-B4-F (22)	1/13/2010	10010398	Х	Х	Х	Х	Х	Х	Х		Х
P3-B4-F (24)	1/13/2010	10010398	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-B.5-W (8)	1/14/2010	10010479	Х	Х	Х	Х	Х	Х			
P3-B.5-W (15)	1/14/2010	10010479	Х	Х	Х	Х	Х	Х			
P3-C1-W (10)	1/14/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-C1-W (18)	1/14/2010	10010865	Х	Х	Х	Х	Х	Х			Х
P3-A.5-W (8)	1/20/2010	10010721	Х	Х	Х	Х	Х	Х			
P3-A.5-W (20)	1/20/2010	10010721	Х	Х	Х	Х	Х	X			
P3-B-W (8)	1/20/2010	10010721	Х	Х	Х	Х	Х	X			
P3-B-W (20)	1/20/2010	10010721	Х	Х	Х	Х	Х	X			
P3-C.5-W (8)	1/20/2010	10010721	Х	Х	Х	Х	Х	Х			
P3-C.5-W (20)	1/20/2010	10010721	Х	Х	Х	Х	Х	Х			
P3-D-W (8)	1/20/2010	10010721	Х	Х	Х	Х	Х	Х			
P3-C3-F (22)	1/25/2010	10010891	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-D2-F (22)	1/25/2010	10010891	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-C2-F (24)	1/26/2010	10010891	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-D2-F (24)	1/26/2010	10010891	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-C3-F (24)	1/26/2010	10010891	Х	Х	Х	Х	Х	Х	Х	Х	Х
P3-D.5-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	X			Х
P3-D.5-W (20)	1/27/2010	10010950	Х	Х	Х	Х	Х	X			Х
P3-E-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	X			Х
P3-E-W (20)	1/27/2010	10010950	Х	Х	Х	Х	Х	X			Х
P3-E.5-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
				•		•	•		•		

- P3 Phase 3 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P3-E.5-W (20)	1/27/2010	10010950	X	Х	X	Х	Х	X			Х
P3-F-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х		Х	Х
P3-F-W (20)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
P3-A1.5-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
P3-A1.5-W (20)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
P3-A2.5-W (3)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х		Х	Χ
P3-A2.5-W (8)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
P3-A2.5-W (20)	1/27/2010	10010950	Х	Х	Х	Х	Х	Х			Х
P3-E3-F (24)	1/28/2010	10011007	Х	Х	Х	Х	Х	Х	Х		Х
P3-DE1.5-F (23)	1/29/2010	10011007	Х	Х	Х	Х	Х	Х	Х		Х
P3-DE1-F (23)	1/29/2010	10011007	Х	Х	Х	Х	Х	Х	Х		Х
P3-F2-F (23)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х	Х		Х
P3-F2-F (25)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х	Х		Х
P3-H1.5-F (23)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х	Х		Х
P3-F.5-W (3)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х		Х	Х
P3-F.5-W (8)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х			Х
P3-F.5-W (20)	2/3/2010	10020250	Х	Х	Х	Х	Х	Х			Х
P3-G-W (3)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х			Х
P3-G-W (8)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х			Х
P3-G-W (20)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х			Х
P3-E3-F (25)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х	Х		Х
P3-G.5-W (3)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х		Х	Х
P3-G.5-W (8)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х			Х
P3-G.5-W (20)	2/4/2010	10020301	Х	Х	Х	Х	Х	Х			Х
P3-H-W (3)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х			Х
P3-H-W (8)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х			Х
P3-H-W (20)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х			Х
P3-H.5-W (3)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х		Х	Х
P3-H.5-W (8)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х			Х
P3-H.5-W (20)	2/5/2010	10020311	Х	Х	Х	Х	Х	Х			Χ

- P3 Phase 3 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Sample	Date	Teklab	BTEX	VOCs	PNA	SVOCs	RCRA	Total Cyanide	Amenable Cyanide	TPH	Pesticides/	PCBs
Identification	Collected	WO Number 10031028	(8260) X	(8260) X	(8270 SIMS)	(8270) X	Metals X	(9012) X	(9012) X	(OA-1, OA-2)	Herbicides	
P4-A5-W (3) P4-A5-W (8)	3/26/2010	10031028	X	X	X	X	X	X	X			
P4-A4-W (3)	3/26/2010	10031028	X	X	X	×	X	X	X		Х	Х
P4-A4-W (8)	3/26/2010	10031028	X	X	X	X	X	X	X		^	
. ,	3/29/2010	10031028	X	X	X	X	X	X	X			
P4-A3-W (3)	-		X		X	X		X				
P4-A3-W (8)	3/29/2010 3/29/2010	10031116	X	X	X	X	X X	X	X		Х	Х
P4-A2-W (3)	-	10031116									^	
P4-A2-W (8)	3/29/2010	10031116	X	X	X	X	X	X	X			
P4-A1-W (3)	3/31/2010	10040092	X	X	X	X	X	X	X			
P4-A1-W (8)	3/31/2010	10040092	X	X	X	X	X	X	X	.,		
P4-A1-W (20)	3/31/2010	10040092	X	X	X	X	X	X	X	X		
P4-A2-W (20)	3/31/2010	10040092	X	X	X	X	X	X	X	X		
P4-A3-W (20)	3/31/2010	10040092	Х	Х	Х	Х	Х	Х	Х	Х		
P4-A4-W (20)	3/31/2010	10040092	Х	Х	Х	Х	Х	Х	X	Х		
P4-A5-W (20)	3/31/2010	10040092	Х	Х	Х	Х	Х	Х	X	Х		
P4-B2-F (23)	4/2/2010	10040095	Х	Х	Х	Х	Х	Х	X	Х		
P4-B3-F (23)	4/2/2010	10040095	X	Х	Х	Х	Х	Х	X	Х		
P4-BC4-F (23)	4/2/2010	10040095	Х	Х	Х	Х	Х	Х	X	Х		
P4-B2-F (25)	4/7/2010	10040244	Х									
P4-B3-F (25)	4/7/2010	10040244	Х									
P4-BC4-F (25)	4/7/2010	10040244	Х									
P4-D1.5-F (25)	4/12/2010	10040461	X	Х	Х	Χ	Х	Х	X	Х		
P4-D3-F (25)	4/12/2010	10040461	X	Х	Х	Χ	Х	Х	X	Х		
P4-D4.5-F (25)	4/12/2010	10040461	Χ	Х	Χ	Χ	Х	Х	X	Χ		
P4-EF1.5-F (25)	4/12/2010	10040461	Χ	Х	Х	Χ	Х	Х	X	Χ		Х
P4-EF3-F (25)	4/12/2010	10040461	Х	Х	Х	Х	Х	Х	X	Х		Х
P4-EF4.5-F (25)	4/12/2010	10040461	Χ	Х	Х	Х	Х	Х	X	Х		Х
P4-B2-F (25)	4/7/2010	10040639		Х	Х	Х	Х	Х	X	Х		Х
P4-B3-F (25)	4/7/2010	10040639		Х	Х	Х	Х	Х	Х	Х		Х
P4-BC4-F (25)	4/7/2010	10040639		Х	Х	Х	Х	Х	Х	Х		Х
P4-G4-F(24)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х
P4-G4-F(26)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х
P4-G3-F(24)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х
P4-G3-F(26)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х
P4-G2-F(24)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х
P4-G2-F(26)	5/20/2010	10050902	Х	Х	Х	Х	Х	Х	Х	Х		Х

- P4 Phase 4 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P5-A5-W (3)	7/13/2010	10070526	Х	Х	Х	Х	X	Х		Х	Х
P5-A5-W (8)	7/13/2010	10070526	Х	Х	Х	Х	Х	Х			
P5-A5-W (20)	7/15/2010	10070607	Х	Х	Х	Х	Х	Х			
P5-A4-W (3)	7/14/2010	10070526	Х	Х	Х	Х	Х	Х			
P5-A4-W (8)	7/14/2010	10070526	Х	Х	Х	Х	Х	Х			
P5-A4-W (20)	7/15/2010	10070607	Х	Х	Х	Х	Х	Х			
P5-A3-W (3)	7/14/2010	10070526	Х	Х	Х	Х	Х	Х		Х	Х
P5-A3-W (8)	7/14/2010	10070526	Х	Х	Х	Х	Х	Х			
P5-A3-W (20)	7/15/2010	10070607	Х	Х	Х	Х	Х	Х			
P5-B3.5-F (24)	7/15/2010	10070606	Х	Х	Х	Х	Х	Х	Х		
P5-B3.5-F (26)	7/15/2010	10070606	Х	Х	Х	Х	Х	Х	Х		
P5-B2-F (24)	7/16/2010	10070644	Х	Х	Х	Х	Х	Х	Х		
P5-B2-F (26)	7/16/2010	10070644	Х	Х	Х	Х	Х	Х	Х		
P5-D2-F (25)	7/27/2010	10071064	Х	Х	Х	Х	Х	Х	Х		
P5-D4-F (25)	7/27/2010	10071064	Х	Х	Х	Х	Х	Х	Х		
P5-GH4-F(22)	8/27/2010	10081177	Х	Х	Х	Х	Х	Х	Х		
P5-F4-F(25)	8/30/2010	10081266	Х	Х	Х	Х	Х	Х	Х		
P5-G2.5-E (22)	9/3/2010	10090178	Х	Х	Х	Х	Х	Х	Х		

Notes:

P5 Phase 5 Tent Location

A1 Grid Sample Location
W Wall Sample

F Floor Sample (20) Sample Depth

P6-A4.5-W (8)	Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P8-A4.5-W (20)	P6-A4.5-W (3)	10/12/2010	10100541	Х	Х	Х	Х	Х	Х		Х	Х
P6-8.5W (3)	P6-A4.5-W (8)	10/12/2010	10100541	Х	Х	Х	Х	Х	X			
P6 A5.5-W (8)	P6-A4.5-W (20)	10/12/2010	10100541	Х	Х	Х	Х	Х	X			
P6-B5.5-W (3)	P6-A5.5-W (3)	10/12/2010	10100541	Х	Х	Х	Х	Х	Х			
P6-B5.5-W (8)	P6-A5.5-W (8)	10/12/2010	10100541	Х	Х	Х	Х	Х	Х			
P6-BCS.5-W (3) 10/13/2010 10100630 X X X X X X X X X X X X X X X X X X X	P6-B5.5-W (3)	10/13/2010	10100630	Х	Х	Х	Х	Х	Х		Х	Х
P6-BC5.5-W (8) 10/13/2010 10100630 X X X X X X X X X X X X X X X X X X X	P6-B5.5-W (8)	10/13/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-C5.5-W (3) 10/14/2010 10100630 X X X X X X X X X X X X X X X X X X X	P6-BC5.5-W (3)	10/13/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-C5.5-W (8) 10/14/2010 10100630 X X X X X X X X X X X X X X X X X X X	P6-BC5.5-W (8)	10/13/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-A5.5-W (21) 10/14/2010 10100630 X X X X X X X X X X X X X X X X X X X	P6-C5.5-W (3)	10/14/2010	10100630	Х	Х	Х	Х	Х	Х		Х	Х
P6-B5.5-W (20)	P6-C5.5-W (8)	10/14/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-B4.5-F (25)	P6-A5.5-W (21)	10/14/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-D3-F (25)	P6-B5.5-W (20)	10/14/2010	10100630	Х	Х	Х	Х	Х	Х			
P6-D3-F (26)	P6-B4.5-F (25)	10/15/2010	10100660	Х	Х	Х	Х	Х	Х	Х		
P6-D4.5-F (25)	P6-D3-F (25)	10/20/2010	10100831	Х	Х	Х	Х	Х	Х	Х		
P6-D4.5-F (26)	P6-D3-F (26)	10/20/2010	10100831	Х	Х	Х	Х	Х	Х	Х		
P6-BC5.5-W (20)	P6-D4.5-F (25)	10/20/2010	10100831	Х	Х	Х	Х	Х	Х	Х		
P6-C5.5-W (20)	P6-D4.5-F (26)	10/20/2010	10100831	Х	Х	Х	Х	Х	Х	Х		
P6-CD5.5-W (3) 10/18/2010 10100792 X X X X X X X X X X X X X X X X X X X	P6-BC5.5-W (20)	10/15/2010	10100661	Х	Х	Х	Х	Х	Х			
P6-CD5.5-W (8) 10/19/2010 10100792 X X X X X X X X X X X X X X X X X X X	P6-C5.5-W (20)	10/18/2010	10100792	Х	Х	Х	Х	Х	Х			
P6-CD5.5-W (20)	P6-CD5.5-W (3)	10/18/2010	10100792	Х	Х	Х	Χ	Х	Х			
P6-D5.5-W (3)	P6-CD5.5-W (8)	10/19/2010	10100792	Х	Х	Х	Х	Х	Х			
P6-D5.5-W (8)	P6-CD5.5-W (20)	10/19/2010	10100792	Х	Х	Х	Х	Х	Х			
P6-D5.5-W (20)	P6-D5.5-W (3)	10/19/2010	10100792	Х	Х	Х	Х	Х	Х			
P6-DE5.5-W (3) 10/20/2010 10100915 X X X X X X X X X X X X X X X X X X X	P6-D5.5-W (8)	10/19/2010	10100792	Х	Х	Х	Х	Х	Х			
P6-DE5.5-W (8) 10/21/2010 10100915 X X X X X X X X X X X X X X X X X X X	P6-D5.5-W (20)	10/20/2010	10100915	Х	Х	Х	Х	Х	Х			
P6-DE5.5-W (20) 10/21/2010 10100915 X X X X X X X X X X X X X X X X X X X	P6-DE5.5-W (3)	10/20/2010	10100915	Х	Х	Х	Х	Х	Х		Х	Х
P6-E5.5-W (3)	P6-DE5.5-W (8)	10/21/2010	10100915	Х	Х	Х	Х	Х	Х			
P6-E5.5-W (8)	P6-DE5.5-W (20)	10/21/2010	10100915	Х	Х	Х	Х	Х	X			
P6-E5.5-W (20)	P6-E5.5-W (3)	10/21/2010	10100915	Х	Х	Х	Х	Х	Х			
P6-F4-F (19) 11/17/2010 10110864 X <td< td=""><td>P6-E5.5-W (8)</td><td>10/21/2010</td><td>10100915</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td>Х</td><td></td><td></td><td></td></td<>	P6-E5.5-W (8)	10/21/2010	10100915	Х	Х	Х	Х	Х	Х			
P6-H4.5-F (19)	P6-E5.5-W (20)	10/21/2010	10100915	Х	Х	Х	Х	Х	Х			
P6-F5.5-W (3)	P6-F4-F (19)	11/17/2010	10110864	Х	Х	Х	Х	Х	Х	Х		
P6-F5.5-W (8) 11/17/2010 10110865 X X X X X X X X X X X X X X X X X X X	P6-H4.5-F (19)	11/17/2010	10110864	Х	Х	Х	Х	Х	Х	Х		
P6-F5.5-W (16) 11/17/2010 10110865 X X X X X X X X X X X X X X X X X X X	P6-F5.5-W (3)	11/17/2010	10110865	Х	Х	Х	Х	Х	Х		Х	Х
P6-G5.5-W (3) 11/17/2010 10110865 X X X X X X X X	P6-F5.5-W (8)	11/17/2010	10110865	Х	Х	X	Х	Х	X			
N'	P6-F5.5-W (16)	11/17/2010	10110865	Х	Х	Х	Х	Х	Х			
P6-G5.5-W (8) 11/17/2010 10110865 X X X X X X X X	P6-G5.5-W (3)	11/17/2010	10110865	Х	Х	X	Х	Х	X			
	P6-G5.5-W (8)	11/17/2010	10110865	Х	Х	Х	Х	Х	Х			

- P5 Phase 5 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P6-G5.5-W (16)	11/17/2010	10110865	Х	Х	Х	Х	X	Х			
P6-H5.5-W (3)	11/18/2010	10110865	Х	Х	Х	Х	Х	Х		Х	Х
P6-H5.5-W (8)	11/18/2010	10110865	Х	Х	Х	Х	Х	Х			
P6-H5.5-W (16)	11/18/2010	10110865	Х	Х	Х	Х	Х	Х			
P6-HI4-W (3)	11/19/2010	10110915	Х	Х	Х	Х	Х	Х		Х	Х
P6-HI4-W (8)	11/19/2010	10110915	Х	Х	Х	Х	Х	Х			
P6-HI4-W (16)	11/19/2010	10110915	Х	Х	Х	Х	Х	Х			
P6-HI3-W (3)	11/22/2010	10111017	Х	Х	Х	Х	Х	Х			
P6-HI3-W (8)	11/22/2010	10111017	Х	Х	Х	Х	Х	Х			
P6-HI3-W (16)	11/22/2010	10111017	Х	Х	Х	Х	Х	Х			
P6-HI2-W (3)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х		Х	Х
P6-HI2-W (8)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х			
P6-HI2-W (16)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х			
P6-HI1-W (3)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х			
P6-HI1-W (8)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х			
P6-HI1-W (16)	11/23/2010	10111050	Х	Х	Х	Х	Х	Х			
P6-H2-F (19)	11/23/2010	10111049	Х	Х	Х	Х	Х	Х	Х		
P6-G3-F (19)	11/23/2010	10111049	Х	Х	Х	Х	Х	Х	Х		

Notes:

P6 Phase 6 Tent Location

A1 Grid Sample Location

W Wall Sample

F Floor Sample

(20) Sample Depth

P7-GH1-F (16) 1/7/2011 11010: P7-G2-F (20) 1/10/2011 11010: P7-G2-F (16) 1/11/2011 11010: P7-F1-F (16) 1/11/2011 11010: P7-F1-F (16) 1/11/2011 11010: P7-F1-F (20) 1/11/2011 11010: P7-G1-SW (3) 1/12/2010 11010: P7-G1-SW (8) 1/12/2010 11010: P7-G1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (16) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11020: P7-B1-S-F (22) 2/9/2011 11020: P7-B1-S-F (22) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-CC1-SW (8) 2/15/2011 11020: P7-CC1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	10299 10350 10350 10350 10396 10396 10396 10396 10396	X X X X X	X X X X	X X X	X	X	Х	Х		
P7-G2-F (16)	10350 10350 10350 10350 10396 10396 10396 10396	X X X	X X X	Х				^		
P7-F1-F (16) 1/11/2011 11010: P7-F1-F (20) 1/11/2011 11010: P7-G1-SW (3) 1/12/2010 11010: P7-G1-SW (8) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-G1-SW (3) 1/12/2010 11010: P7-FG1-SW (3) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2011 11010: P7-F1-SW (3) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11020: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (20) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (9) 2/15/2011 11020:	110350 110350 110396 110396 110396 110396	X X X	X X			X	X	Х		
P7-F1-F (20) 1/11/2011 11010: P7-G1-SW (3) 1/12/2010 11010: P7-G1-SW (8) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2011 11010: P7-F1-SW (3) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020:	10350 10396 10396 10396 10396	X X	Х	Χ	X	Х	Χ	Х		
P7-G1-SW (3) 1/12/2010 11010: P7-G1-SW (8) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (3) 1/13/2011 11010: P7-F1-SW (3) 1/13/2011 11010: P7-F1-SW (6) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E7-SW (8) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (9) 2/15/2011 11020:	10396 10396 10396 10396 10396	Χ		^	X	X	Χ	Х		
P7-G1-SW (8) 1/12/2010 11010: P7-G1-SW (16) 1/12/2010 11010: P7-FG1-SW (3) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (3) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11020: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (9) 2/15/2011 11020:	10396 10396 10396 10396			Χ	X	X	X	Χ		
P7-G1-SW (16) 1/12/2010 11010: P7-FG1-SW (3) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-F1-SW (3) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/15/2011 11	10396 10396 10396	Х	Χ	Χ	X	X	X	Χ		
P7-FG1-SW (3) 1/12/2010 11010: P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (16) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E7-SW (8) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-BC1-SW (3) 2/15/2011 11020: P7-BC1-SW (3) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-CD1-SW (3) 2/15/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011	10396		Х	Χ	X	X	Χ	Χ		
P7-FG1-SW (8) 1/12/2010 11010: P7-FG1-SW (16) 1/12/2010 11010: P7-FG1-SW (3) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E1-SW (8) 1/13/2011 11010: P7-E1-SW (16) 1/13/2011 11010: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-C1-SW (4) 2/15/2011 11020: P7-C1-SW (5) 2/15/2011 11020: P7-C1-SW (6) 2/15/2011 11020: P7-C1-SW (7) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020:	10396	Χ	Х	Χ	X	X	Χ	Х		
P7-FG1-SW (16) 1/12/2010 11010: P7-F1-SW (3) 1/13/2011 11010: P7-F1-SW (8) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-F1-SW (16) 1/13/2011 11010: P7-E7-SW (16) 1/13/2011 11020: P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (25) 2/11/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-C1-SW (3) 2/17/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:		Χ	Х	Χ	X	X	X	Χ	X	
P7-F1-SW (3) 1/13/2011 11010- P7-F1-SW (8) 1/13/2011 11010- P7-F1-SW (16) 1/13/2011 11010- P7-F1-SW (16) 1/13/2011 11010- P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-E1-SW (8) 1/13/2011 11010- P7-E1-SW (8) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11020- P7-B1-SF (20) 2/9/2011 11020- P7-B1-SF (25) 2/11/2011 11020- P7-B1-SW (8) 2/15/2011 11020- P7-B1-SW (8) 2/15/2011 11020- P7-B1-SW (8) 2/15/2011 11020- P7-BC1-SW (8) 2/15/2011 11020- P7-BC1-SW (8) 2/15/2011 11020- P7-BC1-SW (8) 2/15/2011 11020- P7-C1-SW (8) 2/15/2011 11020- P7-CD1-SW (8) 2/15/2011 11020- P7-CD1-SW (8) 2/17/2011 11020- P7-CD1-SW (8) 2/17/2011 11020-	10200	Χ	Х	Χ	X	X	Χ	Χ		
P7-F1-SW (8) 1/13/2011 11010- P7-F1-SW (16) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-E1-SW (8) 1/13/2011 11010- P7-E1-SW (8) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11020- P7-B1-SF (20) 2/9/2011 11020- P7-B1-SF (25) 2/11/2011 11020- P7-B1-SW (8) 2/15/2011 11020- P7-C1-SW (8) 2/15/2011 11020- P7-C1-SW (9) 2/15/2011 11020- P7-CD1-SW (9) 2/17/2011 11020-	10390	Χ	Х	Χ	X	X	X	Χ		
P7-F1-SW (16) 1/13/2011 11010 P7-EF1-SW (3) 1/13/2011 11010 P7-EF1-SW (8) 1/13/2011 11010 P7-EF1-SW (8) 1/13/2011 11010 P7-EF1-SW (3) 1/13/2011 11010 P7-EF1-SW (8) 1/13/2011 11010 P7-E1-SW (8) 1/13/2011 11010 P7-E1-SW (16) 1/13/2011 11010 P7-E1-SW (16) 1/13/2011 11020 P7-B1-SF (22) 2/9/2011 11020 P7-B1-SF (25) 2/11/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-B1-SW (8) 2/15/2011 11020 P7-C1-SW (8) 2/15/2011 11020 P7-CD1-SW (8) 2/15/2011 11020 P7-CD1-SW (8) 2/17/2011 11020	10475	Χ	Х	Χ	X	X	Х			Х
P7-EF1-SW (3) 1/13/2011 11010- P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-B1-SF (20) 2/9/2011 11020: P7-B1-SF (22) 2/9/2011 11020: P7-B1-SF (25) 2/11/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	10475	Χ	Х	Χ	X	X	Χ			
P7-EF1-SW (8) 1/13/2011 11010- P7-EF1-SW (16) 1/13/2011 11010- P7-E1-SW (3) 1/13/2011 11010- P7-E1-SW (8) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11010- P7-E1-SW (16) 1/13/2011 11020- P7-B1-S-F (20) 2/9/2011 11020- P7-B1-S-F (25) 2/11/2011 11020- P7-B1-SW (3) 2/15/2011 11020- P7-B1-SW (8) 2/15/2011 11020- P7-C1-SW (8) 2/17/2011 11020- P7-CD1-SW (8) 2/17/2011 11020-	10475	Χ	Х	Χ	X	X	Х			
P7-EF1-SW (16) 1/13/2011 11010-P7-E1-SW (3) 1/13/2011 11010-P7-E1-SW (8) 1/13/2011 11010-P7-E1-SW (16) 1/13/2011 11010-P7-E1-SW (16) 1/13/2011 11020-P7-B1.5-F (20) 2/9/2011 11020-P7-B1.5-F (25) 2/11/2011 11020-P7-B1-SW (3) 2/15/2011 11020-P7-B1-SW (8) 2/15/2011 11020-P7-C1-SW (8) 2/15/2011 11020-P7-C01-SW (8) 2/17/2011 11020-P7-C01-P7-C01-SW (8) 2/17/2011 11020-P7-C01-SW (8) 2/17/2011 11020-P7-C01-P7-P7-P7-P7-P7-P7-P7-P7-P7-P7-P7-P7-P7-	10475	Χ	Х	Χ	X	X	Χ			
P7-E1-SW (3) 1/13/2011 11010 P7-E1-SW (8) 1/13/2011 11010 P7-E1-SW (16) 1/13/2011 11010 P7-E1-SW (16) 1/13/2011 11020 P7-B1.5-F (20) 2/9/2011 11020 P7-B1.5-F (25) 2/11/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-B1-SW (8) 2/15/2011 11020 P7-B1-SW (22) 2/15/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-BC1-SW (3) 2/15/2011 11020 P7-BC1-SW (22) 2/15/2011 11020 P7-BC1-SW (22) 2/15/2011 11020 P7-C1-SW (3) 2/17/2011 11020 P7-CD1-SW (3) 2/17/2011 11020 P7-CD1-SW (8) 2/17/2011 11020 P7-CD1-SW (8) 2/17/2011 11020	10475	Χ	Χ	Χ	X	X	Χ			
P7-E1-SW (8) 1/13/2011 11010 P7-E1-SW (16) 1/13/2011 11010 P7-B1.5-F (20) 2/9/2011 11020 P7-B1.5-F (22) 2/9/2011 11020 P7-B1.5-F (25) 2/11/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-B1-SW (8) 2/15/2011 11020 P7-B1-SW (8) 2/15/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-BC1-SW (8) 2/15/2011 11020 P7-BC1-SW (8) 2/15/2011 11020 P7-C1-SW (2) 2/15/2011 11020 P7-C1-SW (3) 2/15/2011 11020 P7-C1-SW (4) 2/15/2011 11020 P7-C1-SW (5) 2/15/2011 11020 P7-C1-SW (7) 2/15/2011 11020 P7-C1-SW (8) 2/15/2011 11020 P7-C1-SW (8) 2/15/2011 11020 P7-CD1-SW (8) 2/17/2011 11020 P7-CD1-SW (8) 2/17/2011 11020 P7-CD1-SW (8) 2/17/2011 11020	10475	Χ	Х	Χ	X	X	Χ			
P7-E1-SW (16) 1/13/2011 11010 P7-B1.5-F (20) 2/9/2011 11020 P7-B1.5-F (22) 2/9/2011 11020 P7-B1.5-F (25) 2/11/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-B1-SW (8) 2/15/2011 11020 P7-B1-SW (22) 2/15/2011 11020 P7-B1-SW (3) 2/15/2011 11020 P7-BC1-SW (3) 2/15/2011 11020 P7-BC1-SW (2) 2/15/2011 11020 P7-BC1-SW (2) 2/15/2011 11020 P7-C1-SW (2) 2/15/2011 11020 P7-C1-SW (3) 2/15/2011 11020 P7-C1-SW (4) 2/15/2011 11020 P7-C1-SW (5) 2/15/2011 11020 P7-C1-SW (7) 2/15/2011 11020 P7-C1-SW (8) 2/15/2011 11020 P7-C1-SW (8) 2/15/2011 11020 P7-CD1-SW (8) 2/17/2011 11020 P7-CD1-SW (8) 2/17/2011 11020	10475	Χ	Χ	Χ	X	X	Χ			Х
P7-B1.5-F (20) 2/9/2011 11020: P7-B1.5-F (22) 2/9/2011 11020: P7-B3.5-F (25) 2/11/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-C1-SW (22) 2/15/2011 11020: P7-C1-SW(8) 2/15/2011 11020: P7-C1-SW(8) 2/15/2011 11020: P7-C1-SW(9) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-C1-SW (3) 2/17/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	10475	Χ	Х	Χ	X	X	X			
P7-B1.5-F (22) 2/9/2011 11020: P7-B3.5-F (25) 2/11/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-BC1-SW (3) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (22) 2/15/2011 11020: P7-C1-SW (22) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (9) 2/15/2011 11020: P7-C1-SW (1) 2/15/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	10475	Χ	Х	Χ	X	X	Χ			
P7-B3.5-F (25) 2/11/2011 11020: P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-BC1-SW (3) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (22) 2/15/2011 11020: P7-C1-SW (22) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-CD1-SW (8) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	20342	Χ	Х	Χ	X	X	Χ			Х
P7-B1-SW (3) 2/15/2011 11020: P7-B1-SW (8) 2/15/2011 11020: P7-B1-SW (22) 2/15/2011 11020: P7-BC1-SW (3) 2/15/2011 11020: P7-BC1-SW (8) 2/15/2011 11020: P7-BC1-SW (22) 2/15/2011 11020: P7-C1-SW (3) 2/15/2011 11020: P7-C1-SW (8) 2/15/2011 11020: P7-C1-SW (21) 2/15/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	20342	Χ	Χ	Χ	X	X	Χ			Х
P7-B1-SW (8) 2/15/2011 110201 P7-B1-SW (22) 2/15/2011 110201 P7-BC1-SW (3) 2/15/2011 110201 P7-BC1-SW (8) 2/15/2011 110201 P7-BC1-SW (22) 2/15/2011 110201 P7-C1-SW (3) 2/15/2011 110201 P7-C1-SW (8) 2/15/2011 110201 P7-C1-SW (21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20438	Х	Х	Х	X	X	Х	Х		
P7-B1-SW (22) 2/15/2011 110201 P7-BC1-SW (3) 2/15/2011 110201 P7-BC1-SW (8) 2/15/2011 110201 P7-BC1-SW (22) 2/15/2011 110201 P7-C1-SW (3) 2/15/2011 110201 P7-C1-SW (8) 2/15/2011 110201 P7-C1-SW (21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Χ	Х	Χ	X	X	Χ			
P7-BC1-SW (3) 2/15/2011 110201 P7-BC1-SW (8) 2/15/2011 110201 P7-BC1-SW (22) 2/15/2011 110201 P7-C1-SW (3) 2/15/2011 110201 P7-C1-SW (8) 2/15/2011 110201 P7-C1-SW (21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Χ	Χ	Χ	X	X	Χ			
P7-BC1-SW (8) 2/15/2011 110201 P7-BC1-SW (22) 2/15/2011 110201 P7-C1-SW(3) 2/15/2011 110201 P7-C1-SW(8) 2/15/2011 110201 P7-C1-SW(21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Χ	Х	Χ	X	X	Х			
P7-BC1-SW (22) 2/15/2011 110201 P7-C1-SW(3) 2/15/2011 110201 P7-C1-SW(8) 2/15/2011 110201 P7-C1-SW(21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Χ	Χ	Χ	X	Х	X		Х	
P7-C1-SW(3) 2/15/2011 110201 P7-C1-SW(8) 2/15/2011 110201 P7-C1-SW(21) 2/15/2011 110201 P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Х	Х	Х	X	X	Х			
P7-C1-SW(8) 2/15/2011 11020: P7-C1-SW(21) 2/15/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	20563	Χ	Х	Χ	X	X	Χ			
P7-C1-SW(21) 2/15/2011 11020: P7-CD1-SW (3) 2/17/2011 11020: P7-CD1-SW (8) 2/17/2011 11020:	20563	Χ	Χ	Χ	X	X	Χ			
P7-CD1-SW (3) 2/17/2011 110201 P7-CD1-SW (8) 2/17/2011 110201	20563	Х	Х	Х	X	X	Х			
P7-CD1-SW (8) 2/17/2011 11020	20563	Χ	Х	Χ	X	X	Χ			
. ,	20709	Χ	Χ	Χ	X	X	Χ			Х
D7 CD4 CW (20) 0/47/0044 44000	20709	Χ	Х	Χ	X	X	Χ			
P7-CD1-SW (20) 2/17/2011 11020	20709	Χ	Х	Χ	X	X	Χ			
P7-CD1-F (20) 2/17/2011 11020	20710	Χ	Χ	Χ	X	X	Χ	Х		
P7-CD1-F (22) 2/17/2011 11020	20710	Χ	Х	Χ	X	X	Χ	X		
P7-D1-W (3) 3/2/2011 11030	30152	Χ	Х	Χ	X	X	Χ			
P7-DE1-W (3) 3/2/2011 11030	30152	Χ	Х	Χ	X	X	Х		Х	Х
P7-D1-W (8) 3/2/2011 11030	30152	Χ	Х	Х	Х	Х	Х			
P7-DE1-W (8) 3/2/2011 11030	30152	Χ	Х	Х	Х	X	Χ			
P7-D1-W (21) 3/2/2011 11030	30152	Х	Х	Х	Х	X	Х			
P7-DE1-W (21) 3/2/2011 11030		Х	Х	Х	Х	Х	Х			
P7-E1-F (23) 3/2/2011 11030	30152	Х	Х	Х	Х	Х	Х	Х		
P7-E23-F (23) 3/2/2011 11030	-	Χ	Х	Х	Х	Х	Х	Х		
P7-CD3-F (25) 2/24/2011 110209	30151		Х	Х	Х	Х	Х	Х		

- P7 Phase 7 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)		Pesticides/ Herbicides	PCBs
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х		Х	Х
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/6/2011	11040237	Х	Х	Х	Х	Х	Х			
4/7/2011	11040289	Х	Х	Х	Х	Х	Х	Х		
4/7/2011	11040289	Х	Х	Х	Х	Х	Х	Х		
4/7/2011	11040289	Х	Х	Х	Х	Х	Х	Х		
4/11/2011	11040503	Х	Х	Х	Х	Х	Х			
4/11/2011	11040503	Х	Х	Х	Х	Х	Х			
4/11/2011	11040503	Х	Х	Х	Х	Х	Х			
4/11/2011	11040503	Х	Х	Х	Х	Х	Х			
4/11/2011	11040502	Х	Х	Х	Х	Х	Х	Х		
4/13/2011	11040587	Х	Х	Х	Х	Х	Х	Х		
4/15/2011	11040728	Х	Х	Х	Х	Х	Х	Х		
4/15/2011	11040728	Х	Х	Х	Х	Х	Х	Х		
	Collected 4/6/2011 4/6/2011 4/6/2011 4/6/2011 4/6/2011 4/6/2011 4/6/2011 4/6/2011 4/7/2011 4/7/2011 4/11/2011 4/11/2011 4/11/2011 4/11/2011 4/11/2011 4/11/2011 4/13/2011 4/15/2011	Collected Wo Number 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/6/2011 11040237 4/7/2011 11040289 4/7/2011 11040289 4/7/2011 11040503 4/11/2011 11040503 4/11/2011 11040503 4/11/2011 11040503 4/11/2011 11040503 4/11/2011 11040502 4/13/2011 11040587 4/15/2011 11040728	Collected WO Number (8260) 4/6/2011 11040237 X 4/7/2011 11040289 X 4/7/2011 11040289 X 4/11/2011 11040503 X	Collected WO Number (8260) (8270 SIMS) 4/6/2011 11040237 X X 4/7/2011 11040237 X X 4/7/2011 11040289 X X 4/7/2011 11040289 X X 4/11/2011 11040503 X X 4/11/2011 11040503 </td <td>Collected WO Number (8260) (8270 SIMS) (8270) 4/6/2011 11040237 X X X 4/7/2011 11040237 X X X 4/7/2011 11040289 X X X 4/7/2011 11040289 X X X 4/11/2011 11040503 X X<td>Collected WO Number (8260) (8270 SIMS) (8270) Metals 4/6/2011 11040237 X X X X 4/7/2011 11040289 X X X X 4/7/2011 11040289 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X</td><td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) 4/6/2011 11040237 X X X X X X 4/6/2011 11040237 X X X X X X X 4/6/2011 11040237 X</td><td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) 4/6/2011 11040237 X</td><td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) 4/6/2011 11040237 X</td><td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) Herbicides 4/6/2011 11040237 X</td></td>	Collected WO Number (8260) (8270 SIMS) (8270) 4/6/2011 11040237 X X X 4/7/2011 11040237 X X X 4/7/2011 11040289 X X X 4/7/2011 11040289 X X X 4/11/2011 11040503 X X <td>Collected WO Number (8260) (8270 SIMS) (8270) Metals 4/6/2011 11040237 X X X X 4/7/2011 11040289 X X X X 4/7/2011 11040289 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X</td> <td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) 4/6/2011 11040237 X X X X X X 4/6/2011 11040237 X X X X X X X 4/6/2011 11040237 X</td> <td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) 4/6/2011 11040237 X</td> <td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) 4/6/2011 11040237 X</td> <td>Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) Herbicides 4/6/2011 11040237 X</td>	Collected WO Number (8260) (8270 SIMS) (8270) Metals 4/6/2011 11040237 X X X X 4/7/2011 11040289 X X X X 4/7/2011 11040289 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X X X 4/11/2011 11040503 X X	Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) 4/6/2011 11040237 X X X X X X 4/6/2011 11040237 X X X X X X X 4/6/2011 11040237 X	Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) 4/6/2011 11040237 X	Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) 4/6/2011 11040237 X	Collected Wo Number (8260) (8270 SIMS) (8270) Metals (9012) (9012) (OA-1, OA-2) Herbicides 4/6/2011 11040237 X

Notes:

P8 Phase 8 Tent Location

A1 Grid Sample Location

W Wall Sample

F Floor Sample

(20) Sample Depth

Page 10 of 11

Table 4-1 Sample Summary.xls

Sample Identification	Date Collected	Teklab WO Number	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
P9-G1.5-F (14)	5/13/2011	11050704	Х	Χ	Χ	Х	Х	Х	Х		
P9-G1.5-F (16)	5/13/2011	11050704	Х	Х	Х	Х	Х	Х	Х		
P9-H1-W (3)	5/18/2011	11050904	Х	Х	Х	Х		Х		Х	Х
P9-H1-W (8)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H2-W (3)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H2-W (8)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H3-W (3)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H3-W (8)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H4-W (3)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-H4-W (8)	5/18/2011	11050904	Х	Х	Х	Х		Х			
P9-G1-W (3)	5/19/2011	11051021	Х	Х	Х	Х	Х	Х			
P9-G1-W (8)	5/19/2011	11051021	Х	Х	Х	Х	Х	Х			
P9-G3-F (16.5)	5/19/2011	11051024	Х	Х	Х	Х	Х	Х	Х		
P9-G3-F (18)	5/19/2011	11051024	Х	Х	Χ	Х	Х	Х	Х		
P9-FG1.5-F (16)	5/19/2011	11051024	Х	Х	Х	Х	Х	Х	Х		
P9-FG1.5-F (18)	5/19/2011	11051024	Х	Х	Х	Х	Х	Х	Х		
P9-H4-W (17)	5/25/2011	11051268	Х	Х	Χ	Х	Х	Х			
P9-H3-W (16)	5/25/2011	11051268	Х	Х	Χ	Х	Х	Х			
P9-H2-W (16)	5/25/2011	11051268	Х	Х	Х	Х	Х	Х			
P9-H1-W (15)	5/25/2011	11051268	Х	Х	Х	Х	Х	Х			
P9-G1-W (15)	5/25/2011	11051268	Х	Х	Χ	Х	Х	Х			
P9-F1-W (3)	5/25/2011	11051268	Х	Х	Х	Х	Х	Х			
P9-F1-W (8)	5/25/2011	11051268	Х	Х	Х	Х	Х	Х			
P9-F1-W (15)	5/25/2011	11051268	Х	Х	Χ	Х	Х	Х			
P9-E3-F (16)	6/1/2011	11060059	Х	Х	Χ	Х	Х	Х	Х		
P9-E3-F (18)	6/1/2011	11060059	Х	Х	Х	Х	Х	Х	Х		
P9-DE1.5-F (16)	6/1/2011	11060059	Х	Х	Х	Х	Х	Х	Х		
P9-DE1.5-F (18)	6/1/2011	11060059	Х	Х	Х	Х	Х	Х	Х		
P9-DE1.5-F (24)	6/7/2011	11060324	Х	Х	Х	Х	Х	Х	Х		
P9-E1-W (3)	6/7/2011	11060325	Х	Х	Х	Х	Х	Х			
P9-E1-W (8)	6/7/2011	11060325	Х	Х	Х	Х	Х	Х			
P9-E1-W (24)	6/10/2011	11060730	Х	Х	Х	Х	Х	Х			
P9-D1-W (3)	6/7/2011	11060325	Х	Х	Х	Х	Х	Х			
P9-D1-W (8)	6/7/2011	11060325	Х	Х	Х	Х	Х	Х			
P9-D1-W (24)	6/10/2011	11060730	Х	Х	Х	Х	Х	Х			
P9-DE1.5-F (26)	6/10/2011	11060557	Х	Х	Х	Х	Х	Х	Х		

- P9 Phase 9 Tent Location
- A1 Grid Sample Location
- W Wall Sample
- F Floor Sample
- (20) Sample Depth

TABLE 4-2 PERIMETER SOIL SAMPLE SUMMARY CHAMPAIGN FORMER MGP SITE AMEREN ILLINOIS

Sample Identification	Date Collected	Teklab WO Number	BTEX (8260)	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
PA1-01 (3)	6/9/2011	11060553		Х	Х	Х	X	X	X			
PA1-02 (3)	6/9/2011	11060553		Χ	Х	Х	X	X	X			
PA1-03 (3)	6/9/2011	11060553		Χ	Х	X	X	X	X			
PA1-04 (3)	6/9/2011	11060553		Χ	Х	Х	X	X	X			
PA1-05 (3)	6/9/2011	11060553		Χ	Х	X	X	X	X			
PA1-06 (3)	6/9/2011	11060553		Х	Х	Х	X	X	X			
PA4-01(3)	7/27/2011	11080002	Benzene/ Xylene		Х		Selenium/ 2-meth/ chrysene					ł
PA3-12(3)	7/27/2011	11080002	Benzene/ Xylene		Х							
PA3-11(3)	7/27/2011	11080002	Benzene/ Xylene		Х							
PA3-10(3)	7/27/2011	11080002	Benzene/ Xylene		Х							
PA3-09(3)	7/28/2011	11080002	Benzene/ Xylene		Х							
PA3-07(3)	7/28/2011	11080002	Benzene/ Xylene		Х							
PA3-06(3)	7/28/2011	11080002	Benzene/ Xylene		Х							
PA3-05(3)	7/29/2011	11080002	Benzene/ Xylene		Х							
PA3-04(3)	7/29/2011	11080002	Benzene/ Xylene		Х							
PA3-03(3)	7/29/2011	11080002	Benzene/ Xylene		Х							
PA3-02(3)	8/1/2011	11080288	Х		Х		Arsenic / Chromium					
PA3-01(3)	8/1/2011	11080288	Х		Х		Arsenic / Chromium					
PA2-06(3)	8/1/2011	11080288					Arsenic					
PA2-05(3)	8/1/2011	11080288					Arsenic					
PA2-04(3)	8/1/2011	11080288					Arsenic					
PA2-03 (3)	8/2/2011	11080288					Arsenic					
PA2-02 (3)	8/2/2011	11080288					Arsenic					
PA2-01A(3)	8/3/2011	11080288		Х	Х		X - Arsenic/Chromium	Х	х	Х		Х
PA2-01B(3)	8/3/2011	11080288		Х	Х		X - Arsenic/Chromium	Х	Х	Х		Х
PA6-1 (3)	8/9/2011	11080613			Х		Arsenic / Selenium/ 2- Meth					
PA6-2 (3)	8/9/2011	11080613			Х		Arsenic / Selenium/ 2- Meth					
PA6-3 (3)	8/9/2011	11080613			Х		Arsenic / Selenium/ 2- Meth					
PA6-4 (3)	8/9/2011	11080613			Х		Arsenic / Selenium/ 2- Meth					
PA5-1 (3)	8/9/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA5-2 (3)	8/10/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA5-3 (3)	8/10/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA5-4 (3)	8/10/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA5-5 (3)	8/10/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA5-6 (3)	8/10/2011	11080613	Х		Х		Arsenic / Selenium/ 2- Meth					
PA2-01B (10)F	8/11/2011	11080614		Х	Х	Х	X - Arsenic	Х		Х		Х
PA2-01C (10)F	8/11/2011	11080614		Х	Х	Х	X - Arsenic	Х		Х		Х
PA2-03 (10)	8/15/2011	11080894		Х	Х	Х	Х	Х		Х		
PA2-04 Wall	8/15/2011	11080894		Х	Х	Х	Х	Х		Х		
PA3-15 (9)	8/15/2011	11080894	Х		Х		Arsenic / Chromium					
PA1-Wall	8/16/2011	11080894		Х	Х	Х	Х	Х		Х		

Notes:

PA1 Perimeter Area

1 Grid Location

(3) Sample Depth

Page 1 of 2

TABLE 4-2 PERIMETER SOIL SAMPLE SUMMARY CHAMPAIGN FORMER MGP SITE AMEREN ILLINOIS

Sample Identification	Date Collected	Teklab WO Number	BTEX (8260)	VOCs (8260)	PNA (8270 SIMS)	SVOCs (8270)	RCRA Metals	Total Cyanide (9012)	Amenable Cyanide (9012)	TPH (OA-1, OA-2)	Pesticides/ Herbicides	PCBs
PA2-01A (10)	8/16/2011	11080894		Х	Χ	Х	Х	Х		Χ		
PA4-06 (3)	8/17/2011	11080894	Х		Х	Х	Selenium/ 2-meth/ chrysene					
PA4-04 (3)	8/17/2011	11080894	Х		Х	Х	Selenium/ 2-meth/ chrysene					
PA4-03 (3)	8/17/2011	11080894	Х		Х	Х	Selenium/ 2-meth/ chrysene					
PA4-02 (3)	8/18/2011	11080894	Х		Х	Х	Selenium/ 2-meth/ chrysene					
PA4-01 (3)	8/18/2011	11080894	Х		Х	Х	Selenium/ 2-meth/ chrysene					
PA5-14 (3)	8/18/2011	11080893	х	Х	Х	Dibenzo (ah)/ Dibenzofuran/ Naph/ 2-Meth	Chrysene/ Selenium/ Mercury					
PA5-13 (3)	8/18/2011	11080893	X	Х	Х	Dibenzo (ah)/ Dibenzofuran/ Naph/ 2-Meth	Chrysene/ Selenium/ Mercury					
PA5-11 (3)	8/19/2011	11080893	X	Х	Х	Dibenzo (ah)/ Dibenzofuran/ Naph/ 2-Meth	Chrysene/ Selenium/ Mercury					
PA5-12 (3)	8/19/2011	11080893	X	Х	Х	Dibenzo (ah)/ Dibenzofuran/ Naph/ 2-Meth	Chrysene/ Selenium/ Mercury					
PA5-10 (3)	8/22/2011	11081123	Х		X	2-Meth	Chrysene/ Selenium/ Mercury					
PA5-09 (3)	8/22/2011	11081123	X		Х	2-Meth	Chrysene/ Selenium/ Mercury					
PA5-08 (3)	8/23/2011	11081123	Х		Х	2-Meth	Chrysene/ Selenium/ Mercury					
PA4-00 (10)	8/23/2011	11081123	Х		Х	2-Meth	Chrysene/ Selenium					
PA5-07 (3)	8/23/2011	11081123	X		Х	2-Meth	Chrysene/ Selenium/ Mercury					

Notes:

PA1 Perimeter Area

Grid Location

(3) Sample Depth

Page 2 of 2

Table 5-1 Soil Confirmation Sample Analytical Results For Excavation Wall - BTEX and PNAs Champaign Former MGP SIte Ameren Illinois

Constituent	Residential	Soil Ingestion Commercial			Soil Inhalation Commercial		Indoo Residential		Soil Component to Groundwater ⁽³⁾	IEPA Accepted Background Levels for MSA	Project Remediation	Sample Location: Sample ID: Sample Date: ample Depth (feet):	P1-A1-W P1-A1-W (0-3) 6/30/2009 0-3'	P1-A1-W P1-A1-W (5-8) 6/30/2009 5-8'	P1-A1-W P1-A1-W (12) 7/14/2009 12'	P1-A2-W P1-A2-W (0-3) 6/30/2009 0-3'	P1-A2-W P1-A2-W (5-6) 6/30/2009 5-6'	P1-A2-W P1-A2-W (15) 7/6/2009 15'	P1-A3-W P1-A3-W (3) 7/7/2009 3'	P1-A3-W P1-A3-W (10) 7/7/2009 10'	P1-A3-W P1-A3-W (20) 7/7/2009 20'	P1-A4-W P1-A4-W (3) 7/7/2009 3'	P1-A4-W P1-A4-W (8) 7/7/2009 8'	P1-A4-W P1-A4-W (20) 7/7/2009 20'	P1-A5-W P1-A5-W(3) 7/15/2009 3	P1-A5-W P1-A5-W(8) 7/15/2009 8	P1-A5-W P1-A5-W(20) 7/15/2009 20	P2-A1-W P2-A1-W (3) 10/23/2009 3	P2-A1-W P2-A1-W (8) 10/23/2009 8	P2-A1-W P2-A1-W (20) 10/27/2009 20	
X Constituents (mg/kg)																															
ene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		0.303	2.42	23.9	3.96	2.47	4.96	154	0.86	9.72	0.115	1.89	8.26	1.39	1.35	44.8	15.8	3.59	0.448	
enzene	7,800	200,000	20,000	400	400	58	130	130	13		58		0.330	18.9	3.4	16.9	18.5	6.24	72.0	1.83	5.1	0.207	3.83	2.93	22.2	13.2	<0.112	6.8	8.48	2.15	
ne	16,000	410,000	410,000	650	650	42	240	240	12		42		0.660	<5.48	30.2	<5.76	<7.340	0.66	<97.7	<1.54	14	0.047	0.410	6.36	<5.17	<4.16	4.88	10	< 5.69	0.35	
ylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				0.540	5.48	12.1	8.77	10.1	4.15	50.0	0.42	18.0	0.194	1.57	5.47	8.54	7.24	<0.112	25.5	4.4	1.41	
ene	16,000	410,000	41,000	410	410	6.5	98	140	190				0.270	6.98	5.2	5.7	7.59	2.83	<97.7	0.53	8.01	0.120	1.0	2.8	7.77	5.42	< 0.112	13	2.9	0.75	
es	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		0.810	12.460	17.3	14.470	17.690	6.980	50.0	0.950	26.010	0.314	2.570	8.270	16.310	12.660	<0.112	38.5	7.3	2.16	
Constituents (mg/kg)																															
phthene	4,700	120,000	120,000						570	0.13	4,700		4.21	35.5	0.435	56.3	12.0	1.6	160	28	9.7	0.31	37	23	60.7	8.7	0.013	13.1	21.3	0.935	
aphthylene	2.300 ⁽⁴⁾	61.000 ⁽⁴⁾	61.000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		64.8	5	2.69	7.59	1.79	0.59	17	2.2	30	0.12	3.7	26	4.63	1.01	0.003	12.8	4.58	0.421	
cene	23,000	610,000	610,000						12,000	0.4			16.1	19.3	1.06	33.2	5.86	0.97	86	12	22	0.21	17	24	26.3	3.84	0.006	11.6	9.46	0.629	
a)anthracene	0.90	8	170						2	1.8	2		72	9.08	0.567	15.3	3.26	0.48	49	6.4	11	0.22	8.2	13	12	1.65	0.007	9.11	4.97	0.353	
a)pyrene	0.09	0.80	17						8	2.1	2.1		166	8.38	0.583	14.2	2.94	0.38	44	5.7	10	0.3	8.4	13	11.4	1.39	0.004	7.49	4.92	0.386	
(b)fluoranthene	0.90	8	170						5	2.1	2.1		151	6.73	0.437	11.6	2.36	0.32	39	4.6	8	0.25	6.3	9.9	8.61	1.08	< 0.004	8.17	3.91	0.324	
(g,h,i)perylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61 000(4)						27.000 ⁽⁴⁾	1.7			106	2.79	0.279	4.94	0.956	0.16	21	2.6	4.4	0.18	3.6	5.7	4.86	0.595	< 0.004	2.07	1.88	0.127	
(k)fluoranthene	9	78	1,700						49	1.7	9		42.4	2.4	0.155	4.31	0.856	0.098	13	1.6	2.7	0.087	2.1	3.2	3.02	0.34	< 0.004	3.06	1.28	0.105	
thylhexyl)phthalate	46	410	4,100	31,000	31.000	31.000			3.600				<16.6	<8.54	< 0.724	<8.67	<4.38	< 0.74	<55	<8.8	<19	< 0.092	<9.1	<19	<8.61	<7.52	< 0.075	<7.82	<4.73	< 0.076	
ne	88	780	17.000						160	2.7	88		70	9.37	0.598	16.1	3.38	0.45	49	6.3	12	0.24	8.5	14	13.3	1.57	0.004	9.77	5.68	0.397	
o(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		23.3	0.786	0.062	1.38	0.261	0.043	5.5	0.65	1.1	0.044	0.92	1.4	1.16	<0.381	< 0.004	1.05	0.48	0.034	
nthene	3,100	82,000	82.000						4,300	4.1			81.7	22	1.17	36.8	7.15	0.99	110	15	24	0.37	19	27	28.8	3.67	0.008	24.3	11.6	0.821	
10	3,100	82,000	82.000						560	0.18	3,100		6.66	25.7	1.67	38.3	8.96	1.0	65	13	24	0.16	14	33	25.2	5.16	0.008	17.3	10.5	0.646	
(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		78.1	2.29	0.191	4.32	0.795	0.13	17	2	3.2	0.14	2.8	4.3	3.64	0.449	<0.004	2.48	1.51	0.106	
alene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		10.8	74.8	10.2	141	26.3	11.0	340	73	170	0.38	65	160	187	33.5	0.08	44.9	58.2	1.52	
hrene	2,300 ⁽⁴⁾	61.000 ⁽⁴⁾	61.000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		17.5	68.2	3.57	104	23.2	3.4	260	40	79	0.48	54	81	77.8	13.8	0.023	43.6	37.8	1.89	
illelle	2,300	61,000	61.000						4,200	3			160	30.4	1.7	47.3	9.74	1.4	150	20	35	0.49	27	30	39.9	5.22	0.012	17.2	16.4	1.21	

Page 1 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

									0-1	IEPA Accepted		Sample Location:	P2-A3-W	P2-A3-W	P2-A3-W	P3-A1-W	P3-A1-W	P3-A1-W	P3-A2-W	P3-A2-W	P3-A3-W	P3-A3-W	P3-A4-W	P3-A4-W	P3-A4-W P3-A4-W (15)	P3-B.5-W	P3-B.5-W	P3-C1-W	P3-C1-W	P3-A.5-W
		Soil Ingestion			Soil Inhalation		lada	Ai-	Soil Component	Background	Project Remediation	Sample ID: Sample Date:	P2-A3-W (3) 10/26/2009	P2-A3-W (8) 10/26/2009	P2-A3-W (20)	P3-A1-W (3) 1/12/2010	P3-A1-W (10) 1/12/2010	P3-A1-W (15) 1/12/2010	P3-A2-W (8) 1/12/2010	P3-A2-W (16) 1/12/2010	P3-A3-W (3) 1/12/2010	P3-A3-W (6) 1/12/2010	P3-A4-W (3) 1/13/2010	P3-A4-W (10) 1/13/2010	1/13/2010	P3-B.5-W (8) 1/14/2010	P3-B.5-W (15) 1/14/2010	P3-C1-W (10) 1/14/2010	P3-C1-W (18) 1/14/2010	P3-A.5-W (8) 1/20/2010
Constituent	Residential				Commercial	Construction	Indoo Residential			Levels for MSA		ample Depth (feet):	3	8	20	3	1/12/2010	1/12/2010	8	1/12/2010	3	6	3	1/13/2010	1/13/2010	8	1/14/2010	1/14/2010	1/14/2010	8
BTEX Constituents (mg/kg	1)											1 - 1 - ()						-										-		
Benzene	12	100	2,300	0.8	16	2.2	0.069	0.51	0.03		0.069		< 0.99	<0.908	7.04	11.7	15.7	6.91	3.62	6.3	2.26	2.62	5.61	<1	1.61	81.8	10.6	146	118	11.7
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		3.5	10.9	13.3	2.4	6	1.94	<6.33	<0.411	1.89	1.76	1.91	2.5	<0.427	9.7	<20.5	34.6	33	<26
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		<4.95	<4.54	5	9.99	26.6	6.72	3.3	< 0.411	5.52	0.059	2	<5.02	< 0.427	123	13	311	267	18
m,p-Xylenes	16,000	410,000	41,000	420(1)	420 ⁽¹⁾	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				1	4.74	8.7	14	39.3	11.2	2.7	< 0.411	13.1	0.616	2.38	1.7	< 0.427	91.7	6.8	301	258	21
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				1.3	3.5	5.2	5.6	15.5	4.18	<6.33	<0.411	5.54	0.799	1.43	<5.02	< 0.427	33.1	<20.5	115	102	8.2
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		2.3	8.24	13.9	19.6	54.8	15.38	2.7	<0.411	18.64	1.415	3.81	1.7	<0.427	124.8	6.8	416	360	29.2
PNA Constituents (mg/kg)																														
Acenaphthene	4,700	120,000	120.000						570	0.13	4,700		31.6	40.2	2.4	6.14	2.64	0.053	0.312	< 0.004	10.3	0.204	24.8	8.58	0.006	23.1	0.572	43.9	25.3	8.73
Acenaphthylene	2.300(4)	61.000(4)	61 000(4)						85 ⁽⁴⁾	0.07	2,300		8.18	8.53	0.89	27.7	9.05	0.326	0.054	<0.004	18.6	0.01	9.2	4.54	<0.004	96.5	1.99	209	122	25.5
Anthracene	23,000	610,000	610.000						12.000	0.4			14.4	18	1.42	52.1	10.7	0.077	0.083	<0.004	29.7	<0.005	26.3	5.53	0.005	90	0.708	158	93.9	32
Benzo(a)anthracene	0.90	8	170						2	1.8	2		10.2	8	0.765	145	5.34	0.05	<0.004	<0.004	19	0.014	38.9	2.95	0.006	60.5	0.213	100	53.7	15.4
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		14.8	7.3	0.818	146	3.81	0.047	< 0.004	< 0.004	14.7	0.023	41.3	2.59	< 0.004	48.2	<0.191	79.1	39.9	11.4
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		12.1	5.77	0.688	182	4.04	0.055	< 0.004	< 0.004	16.6	0.025	46.3	1.97	0.004	54.9	<0.191	90.7	44.9	12.1
Benzo(g,h,i)perylene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			7.27	2.6	0.282	83.6	1.81	0.027	< 0.004	< 0.004	5.53	0.032	19.8	1.07	0.004	17.7	<0.191	24	12.5	2.88
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		3.66	1.82	0.24	70	1.69	0.02	< 0.004	< 0.004	6.59	0.022	17.2	0.728	< 0.004	21.5	<0.191	29.8	17.3	4.87
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<4.43	<4.47	< 0.429	<47.1	<24.3	< 0.075	<0.088	< 0.076	<11.1	< 0.094	<13.7	<4.12	< 0.079	<23.1	<3.76	<25.7	<22.8	<9.23
Chrysene	88	780	17,000						160	2.7	88		12.7	8.79	0.874	146	4.61	0.05	< 0.004	< 0.004	19	0.013	40.4	2.84	0.004	58.1	<0.191	102	54.9	14.5
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		1.78	0.732	0.076	23.6	<1.23	0.008	< 0.004	<0.004	2.75	0.025	5.82	0.308	<0.004	6.65	<0.191	10.8	5.64	1.24
Fluoranthene	3,100	82,000	82,000						4,300	4.1			20.8	18.6	1.76	321	13.3	0.135	0.024	<0.004	50.8	<0.005	95.9	6.22	0.009	184	0.409	271	147	44.1
Fluorene	3,100	82,000	82,000						560	0.18	3,100		13.6	19.3	1.36	21.7	12.3	0.199	0.311	<0.004	37.9	0.151	21.9	6.83	0.005	116	2.31	219	124	40.3
Indeno(1,2,3-cd)pyrene	0.90	8.00	170	470					14	1.6	1.6		5.6	2.14	0.241	83.3	1.71	0.024	<0.004	<0.004	5.99	0.031	19.5	0.843	<0.004	19	<0.191	28.4	14.5	3.25
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		37.1	107	7.07	45.2	43.7	3.51	3.53	0.011	140	1.35	14.7	25.4	0.026	748	21.1	1380	582	254
Phenanthrene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200(4)	2.5	2,300		50.5	69.3	5.11	161	27.5	0.234	0.324	<0.004	90.4	0.018	94.9	20.1	0.016	313	2.52	489	258	95.2
Pyrene	2,300	61,000	61,000						4,200	3			30.4	25.7	2.33	275	11.7	0.109	0.01	<0.004	37.5	<0.005	82.5	8.5	0.01	135	0.282	199	109	35.8

Page 2 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

1º Objective is for m-xylene
1º Objective sar for Class I groundwater.
1º Non-TACO or provisional ROs provided by the IEPA.
1- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

										IEDA A			D0 4 5 11/	D0 D W	D0 0 5 111	D0 0 5 W	D0 D 14/	D0 D 5 11/	D0 D 5 W	D0 5 111	D0 F 14/	D0 E 5 M	D0 F 5 111	D0 E 14/	D0 F 14/	50.44.518/	D0 14 5 14	D0 40 5 141	D0 40 5 111	B0 40 5 14/
									0.7	IEPA Accepted		Sample Location:	P3-A.5-W	P3-B-W	P3-C.5-W	P3-C.5-W	P3-D-W	P3-D.5-W	P3-D.5-W	P3-E-W	P3-E-W	P3-E.5-W	P3-E.5-W	P3-F-W	P3-F-W	P3-A1.5-W	P3-A1.5-W	P3-A2.5-W	P3-A2.5-W	P3-A2.5-W
		0-11			0-11-1-1-6		la de	4:-	Soil	Background	Project	Sample ID:	P3-A.5-W (20)	P3-B-W (8)	P3-C.5-W (8)	P3-C.5-W (20)	P3-D-W (8)	P3-D.5-W (8)	P3-D.5-W (20)	P3-E-W (8)	P3-E-W (20)	P3-E.5-W (8)	P3-E.5-W (20)	P3-F-W (8)	P3-F-W (20)					P3-A2.5-W (20)
Constituent	Residential	Soil Ingestion Commercial			Soil Inhalation Commercial		Indoo Residential		Component to Groundwater ⁽³⁾	Levels for MSA	Remediation Objectives an	Sample Date: mple Depth (feet):	1/20/2010 20	1/20/2010 8	1/20/2010 8	1/20/2010 20	1/20/2010 8	1/27/2010 8	1/27/2010 20	1/27/2010 3	1/27/2010 8	1/27/2010 20								
BTEX Constituents (mg/kg		Commorcial	Condudation	rtoolaontiai	Commorcial	001101110110111	rtooidonida	Commordia	to Greananator	IOI INIO/ C	Objectives un	inplo Dopar (loct).				20							20							20
Benzene Brex Constituents (mg/kg	10	100	2,300	0.8	4.6	2.2	0.069	0.51	0.03		0.069		5.1	16.4	7.84	10.4	21.3	8.87	22	9.29	<0.418	222	13.4	56.3	16.1	39.7	6.86	3.59	2.27	7.16
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		0.9	<27.2	3.9	<27.2	32	0.94	30.7	2.9	0.54	62.9	11.5	6.88	1.5	11.8	2.5	5.83	2.5	1.0
Toluene	16.000	410,000	410.000	650	650	42	240	240	12		42		<3.26	23	6.89	13	44.1	6.39	35.8	8.06	0.95	156	13	4.4	9.66	65.5	1.3	2.04	4.3	8.96
m.p-Xvlenes	16,000	410,000	41,000	420(1)	420 ⁽¹⁾	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				2.7	20	19.1	10	56.4	5.59	34.9	18.8	2.6	300	18	58.2	9.77	78.8	8.29	13.2	7.61	5.38
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				1.0	7.7	7.79	<27.2	26	2.2	17.2	8.33	1.1	139	8.35	22.4	4.1	29.5	2.8	1.72	3.1	2.0
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		3.7	27.7	26.89	10	82.4	7.79	52.1	27.13	3.7	439	26.35	80.6	13.87	108.3	11.09	14.92	10.71	7.38
·													'								•									
PNA Constituents (mg/kg)																														
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		0.096	32.6	9.65	0.678	33.7	1.26	18	2.37	2.22	2.08	2.27	3.4	1.65	1.96	<0.038	2.95	4.36	< 0.037
Acenaphthylene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		0.162	101	9.01	2.54	68.6	5.4	16.6	4.84	8.01	4.26	2.79	3.7	2.65	8.1	0.073	1.81	12.3	0.12
Anthracene	23,000	610,000	610,000						12,000	0.4			0.226	110	9.11	2.2	34.7	5.56	14.3	6.69	7.95	5.11	2.84	17.6	4.76	7.54	0.03	4.99	10.7	0.039
Benzo(a)anthracene	0.90	8	170						2	1.8	2		0.159	69.6	9.36	1.77	22.9	3.52	8.73	5.4	5.04	3.64	2.05	13.5	3.38	4.73	0.137	3.54	7.06	0.082
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		0.128	55.1	11.3	1.88	22.2	2.76	6.71	3.85	3.88	2.6	1.23	9.38	2.17	2.78	0.179	2.16	4.07	0.064
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		0.138	57.8	9.32	1.98	19.9	2.96	5.8	3.62	3.59	2.33	1.14	10.3	2.1	3.1	0.189	2.62	4.31	0.072
Benzo(g,h,i)perylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			0.045	15.9	5.93	0.858	9.48	1.13	3.17	1.88	1.89	1.26	<0.758	3.84	0.898	1.06	0.13	0.854	1.26	0.045
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		0.048	20.8	3.19	0.655	6.75	1.15	1.94	1.3	1.26	0.84	<0.758	3.85	0.778	1.17	0.06	0.889	1.82	<0.037
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<0.382	<12.5	<4.27	<3.85	<4.3	<1.52	<11.2	<16.5	<14.3	<16.8	<14.9	<16.7	<15.2	<17.5	<0.748	<14.3	<13.1	< 0.739
Chrysene	88	780	17,000						160	2.7	88		0.153	68.5	8.83	1.69	22.4	3.22	8.2	4.07	4.2	3.05	1.26	10.8	2.3	3.78	0.095	2.96	6.51	0.053
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		<0.019	6.17	1.35	0.243	2.69	0.461	0.81	<0.839	0.57	<0.854	<0.758	1.43	<0.77	<0.888	0.034	<0.726	0.6	<0.037
Fluoranthene	3,100	82,000	82,000						4,300	4.1			0.413	193	20.2	4.18	51.4	10.2	20.8	12.6	12.7	7.54	4.06	34	7.39	11.6	0.171	8.91	15.6	0.114
Fluorene	3,100	82,000	82,000						560	0.18	3,100		0.244	151	11.1	2.16	45.9	6.51	18.9	7.69	8.17	5.63	3.28	15.7	5.1	9.27	< 0.038	5.95 1.1	14.5	0.043
Indeno(1,2,3-cd)pyrene Naphthalene	0.90 1,600	8.00	1/0 4.100	170	270	1.8	24	24	14	1.6 0.2	1.0		0.04 1.17	16.9 528	4.3 124	0.789 22.4	7.88 593	1.49 34.8	3.17 150	2.05 98.7	2.06 83.6	1.19 290	<0.758 44.7	4.94 204	1.05	1.32 48.6	0.137 1.39		1.8 87.4	0.047 1.68
		41,000	4,100		2/0		34	34	200 ⁽⁴⁾		1.8											290			76.3			19.2		
Phenanthrene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000(**)						4.200	2.5	2,300		0.758	386 185	37.5 22.2	6.67	112	18.6	56.6 25.7	25.5	26.1	16	9.63	61.3	14.7	21.4	0.103	15.2 6.74	26.4	0.123
Pyrene	2,300	61,000	61,000						4,200	3			0.406	185	22.2	3.82	62.3	7.52	25.7	12.9	12.5	8.79	4.49	25.9	6.89	8.68	0.196	0.74	11.5	0.114

Page 3 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

1º Objective is for m-xylene
1º Objective sar for Class I groundwater.
1º Non-TACO or provisional ROs provided by the IEPA.
1- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-1 Soil Confirmation Sample Analytical Results For Excavation Wall - BTEX and PNAs Champaign Former MGP SIte Ameren Illinois

										IEPA Accepted	ı	Sample Location:	P3-F.5-W	P3-F.5-W	P3-F.5-W	P3-G-W	P3-G-W	P3-G-W	P3-G.5-W	P3-G.5-W	P3-G.5-W	P3-H-W	P3-H-W	P3-H.5-W	P3-H.5-W	P3-H.5-W	P4-A1-W	P4-A1-W	P4-A1-W	P4-A2-W
									Soil	Background	Project	Sample ID:	P3-F.5-W (3)	P3-F.5-W (8)	P3-F.5-W (20)	P3-G-W (3)	P3-G-W (8)	P3-G-W (20)	P3-G.5-W (3)	P3-G.5-W (8)	P3-G.5-W (20)	P3-H-W (3)	P3-H-W (20)	P3-H.5-W (3)	P3-H.5-W (8)	P3-H.5-W (20)	P4-A1-W (3)	P4-A1-W (8)	P4-A1-W (20)	P4-A2-W (3)
		Soil Ingestion			Soil Inhalation		Indoo		Component	Levels	Remediation	Sample Date:	2/3/2010	2/3/2010	2/3/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/4/2010	2/5/2010	2/5/2010	2/5/2010	2/5/2010	2/5/2010	3/31/2010	3/31/2010	3/31/2010	3/29/2010
Constituent	Residentia	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽³⁾	for MSA	Objectives a	mple Depth (feet):	3	8	20	3	8	20	3	8	20	3	20	3	8	20	3	8	20	3
BTEX Constituents (mg/kg)																													
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		1.2	7.44	43.9	29.7	0.75	25.3	31.7	0.288	42.6	0.0082	28.2	0.0065	0.217	9.28	3.65	2.08	1460	7.3
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		<5.99	<4.64	<4.08	4.6	1.0	1.8	<2.55	<0.115	<1.67	0.0024	0.31	0.0026	0.12	12.8	9.75	14.9	282	49.6
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		<5.99	<4.64	15	31.1	<1.19	20.8	<2.55	0.029	3.28	0.0029	1.12	0.0048	0.22	3.95	<6.5	<4.84	2510	<29
m,p-Xylenes	16,000	410,000	41,000	420(1)	420 ⁽¹⁾	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				<5.99	3.6	<4.08	16.7	<1.19	7.58	<2.55	<0.115	<1.67	0.0041	1.71	0.0056	0.29	12.5	2.4	4.2	1190	13.7
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				<5.99	1.5	<4.08	7.45	<1.19	3.7	<2.55	<0.115	<1.67	0.0023	1.03	0.0022	0.16	6.15	<6.5	4.7	491	15.6
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		<5.99	5.1	<4.08	24.15	<1.19	11.28	<2.55	<0.115	<1.67	0.0064	2.74	0.0078	0.45	18.65	2.4	8.9	1681	29.3
PNA Constituents (mg/kg)																														
Acenaphthene	4,700	120,000	120.000						570	0.13	4,700		0.53	0.554	0.015	2.21	0.185	0.253	0.638	0.273	0.058	0.037	< 0.004	0.345	0.74	0.45	22.4	31.9	53.8	117
Acenaphthylene	2.300(4)	61 000(4)	61 000(4)						85 ⁽⁴⁾	0.07	2,300		1.27	0.833	0.022	7.79	0.252	1.47	2.01	0.086	0.106	0.456	< 0.004	1.0	0.554	0.14	1.43	2.03	273	6.72
Anthracene	23.000	610.000	610.000						12.000	0.4			1.87	1.92	0.03	5.26	0.4	0.815	1.67	0.013	0.031	0.25	<0.004	1.91	0.371	0.171	6.59	9.74	122	40.3
Benzo(a)anthracene	0.90	8	170						2	1.8	2		4.06	1.28	0.026	3.12	0.136	0.506	1.09	< 0.012	0.023	1.43	0.005	11.7	0.717	0.119	3.55	5.67	75.4	19.8
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		3.56	0.963	0.02	3.05	0.108	0.414	1.03	< 0.012	0.018	1.62	< 0.004	13.1	0.688	0.089	3.35	5.05	72.1	17.1
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		4.58	0.978	0.02	2.52	0.098	0.348	0.852	< 0.012	0.017	2.51	0.004	18.5	0.548	0.081	2.62	4.05	55.2	13.1
Benzo(g,h,i)perylene	2.300(4)	61.000 ⁽⁴⁾	61.000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			1.86	0.391	0.011	1.29	0.054	0.16	0.427	< 0.012	0.012	1.34	<0.004	7.52	0.229	< 0.038	1.33	1.82	27.3	6.94
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		1.78	0.365	< 0.011	0.822	0.034	0.11	0.294	< 0.012	< 0.011	0.835	< 0.004	6.27	0.186	< 0.038	0.85	1.3	18	4.05
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<11.2	<4.42	0.17	<2.3	< 0.239	<2.22	<2.19	< 0.244	< 0.212	< 0.762	< 0.074	<1.55	<2.01	< 0.755	<4.93	<4.26	<146	<9.3
Chrysene	88	780	17,000						160	2.7	88		3.78	1.08	0.019	2.95	0.122	0.426	1.03	< 0.012	0.022	1.7	0.004	12.4	0.663	0.095	3.36	5.61	71.3	20
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		0.55	<0.224	<0.011	0.315	0.013	< 0.113	0.11	< 0.012	<0.011	0.369	< 0.004	2.5	<0.102	< 0.038	0.377	0.536	7.2	1.92
Fluoranthene	3,100	82,000	82,000						4,300	4.1			6.35	2.78	0.045	6.01	0.438	1.08	2.19	0.013	0.041	1.97	< 0.004	18	1.36	0.217	7.18	13	168	43.7
Fluorene	3,100	82,000	82,000						560	0.18	3,100		1.59	1.88	0.036	6.31	0.475	1.03	1.6	0.06	0.047	0.113	< 0.004	0.518	0.789	0.274	8.75	13.6	155	62.1
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		1.82	0.358	<0.011	1.01	0.043	0.129	0.341	<0.012	<0.011	1.2	< 0.004	7.38	0.198	<0.038	1.11	1.57	22.1	5.5
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		10.6	26.3	0.523	52.6	0.474	11.7	15.9	0.015	15	0.338	0.044	0.386	<0.102	9.94	65.5	70	1850	330
Phenanthrene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200(4)	2.5	2,300		5.61	5.77	0.106	18	1.3	2.98	5.27	0.041	0.105	0.825	0.007	6.86	3.31	0.707	23.1	40.3	449	147
Pyrene	2,300	61,000	61,000						4,200	3			5.77	2.64	0.051	8.16	0.51	1.45	2.77	0.013	0.056	2.18	0.004	17.1	1.96	0.322	9.79	19.5	240	62.6

Page 4 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

1º Objective is for m-xylene
1º Objective sar for Class I groundwater.
1º Non-TACO or provisional ROs provided by the IEPA.
1- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

									0-1	IEPA Accepted		mple Location:	P4-A2-W	P4-A2-W	P4-A3-W	P4-A3-W	P4-A3-W	P4-A4-W	P4-A4-W	P4-A4-W	P4-A5-W	P4-A5-W	P4-A5-W	P5-A3-W	P5-A3-W	P5-A3-W	P5-A4-W	P5-A4-W	P5-A4-W	P5-A5-W
		Cail Innestion			Soil Inhalation		lada	Air	Soil	Background	Project Remediation	Sample ID:	P4-A2-W (8) 3/29/2010	P4-A2-W (20)	P4-A3-W (3)	P4-A3-W (8) 3/29/2010	P4-A3-W (20)	P4-A4-W (3) 3/26/2010	P4-A4-W (8) 3/26/2010	P4-A4-W (20) 3/26/2010	P4-A5-W (3) 3/26/2010	P4-A5-W (8) 3/26/2010	P4-A5-W (20) 3/31/2010	P5-A3-W (3)	P5-A3-W (8)	P5-A3-W(20)	P5-A4-W(3) 7/14/2010	P5-A4-W(8) 7/14/2010	P5-A4-W(20) 7/15/2010	P5-A5-W (3) 7/13/2010
Constituent	Residential	Soil Ingestion Commercial			Commercial			or Air Commercia	Component I to Groundwater ⁽³⁾	Levels for MSA	Objectives ampl	Sample Date: le Depth (feet):	8	3/31/2010 20	3/29/2010 3	8	3/31/2010 20	3/20/2010	8	20	3/26/2010	8	20	7/14/2010 3	7/14/2010 8	7/15/2010 20	3	8	20	3
BTEX Constituents (mg/kg										101 111071	05/002700 44.	() .									-				-			-		
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		<4.67	29.7	<6.42	2.52	59	1.82	1.73	7.05	4.95	2.86	2.88	5.73	<1.05	4.8	<1.05	< 0.945	4.97	<0.0919
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		46.1	8.9	72.8	15.2	<6.59	15.7	11.3	1.7	26.7	13.5	<7.91	62.1	8.15	0.72	6.21	<4.73	5.1	0.578
Toluene	16.000	410,000	410.000	650	650	42	240	240	12		42		<23.3	52.2	<32.1	<12.5	28.3	<6.32	<6.47	6.9	<10.8	<6.52	1.8	<6.31	<5.26	0.55	1.4	<4.73	<24.6	<0.46
m,p-Xylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120(2)	200(2)				17.8	37.7	22.5	5.58	<6.59	2.4	3.65	4.4	6.05	<6.52	<7.91	14.9	1.9	1.86	2.4	<4.73	8.0	<0.46
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				16.1	17	26.8	6.06	< 6.59	4.14	4.35	2	9.25	<6.52	<7.91	23.2	3.4	0.812	4.2	1.8	<24.60	0.21
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		23.9	54.7	49.3	11.64	<6.59	6.54	8.0	6.4	15.3	<6.52	<7.91	38.1	5.3	2.672	6.6	1.8	8.0	0.21
DNA O																														
PNA Constituents (mg/kg)	4 700	400.000	120.000						570	0.40	4.700		25.0	14.6	189	16.4	0.00	23.4	00.0	1.46	7.00	04.0	0.401	400	0.40	47.5	40.0	0.044	0.45	4.82
Acenaphthene	4,700	120,000	120,000						85 ⁽⁴⁾	0.13	4,700		35.9				0.29		29.6		7.86	24.3		106	2.42	17.5	40.8	0.614	2.15	
Acenaphthylene	2,300 ⁽⁴⁾ 23,000	61,000 ⁽⁴⁾ 610,000	61,000(*)						40.000	0.07 0.4	2,300		3.68 15.6	101 49.6	12.3 72.1	1.01 6.38	1.18 0.759	1.87 8.58	2.41	2.79 1.85	0.499 2.73	2.1 9.97	0.096 0.247	6.42 38.5	0.283 0.896	2.8 9.55	2.76 16.7	0.433 0.443	0.385 1.2	1.98 5.35
Anthracene Benzo(a)anthracene	0.90	010,000	170						12,000	1.4	2		7.66	31.7	33.9	2.96	0.759	4.8	5.99	1.00	1.27	4.91	0.247	19	0.505	4.86	8.25	0.443	0.638	3.92
Benzo(a)antinacene	0.90	0 80	170						2	2.1	2 1		7.06	31.7	29.5	2.45	0.466	4.37	5.21	1.03	1.07	4.26	0.164	15.3	0.303	4.42	6.96	0.303	0.544	3.67
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		5.38	22.9	22.8	1.97	0.365	4.03	4.24	0.811	0.899	3.41	0.152	12.3	0.333	3.42	5.41	0.413	0.435	2.49
Benzo(g,h,i)perylene	2.300 ⁽⁴⁾	61.000 ⁽⁴⁾	61 000(4)						27,000 ⁽⁴⁾	1.7			2.94	12.4	12.2	0.978	0.176	2.15	2.01	0.402	0.46	1.73	0.102	6.57	0.189	2	2.99	0.206	0.25	1.86
Benzo(k)fluoranthene	2,300	78	1 700						49	1.7	9		1.64	8.76	7.18	0.587	0.117	1.19	1.36	0.299	0.284	0.993	0.043	4.09	0.1	1.09	1.75	0.101	0.135	0.796
Bis(2-ethylhexyl)phthalate	46	410	4.100	31.000	31.000	31.000			3.600				<8.3	<75.6	<9.47	<4.28	<0.724	<2.31	<4.27	<1.88	<0.912	<4.46	<0.151	<8.98	<1.88	<7.65	<8.17	< 0.395	<1.91	<4.26
Chrysene	88	780	17,000						160	2.7	88		7.77	30.5	32.2	2.88	0.455	4.96	5.8	1.04	1.24	4.93	0.165	18.3	0.47	4.82	8.15	0.353	0.602	3.85
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		0.806	<3.83	3.44	0.27	0.044	0.591	0.548	0.153	0.131	0.47	0.021	1.82	< 0.096	0.487	0.792	0.048	< 0.097	0.441
Fluoranthene	3,100	82,000	82,000						4,300	4.1			15.8	67.3	75	6.67	0.984	9.62	12.7	2.26	2.92	10.4	0.336	38.4	1.25	10.3	21.5	0.567	1.27	8.46
Fluorene	3,100	82,000	82,000						560	0.18	3,100		20.1	59.4	80.5	9.42	0.865	9.68	13.6	2.67	3.26	11.5	0.295	52.8	1.25	10	21.6	0.504	1.46	5.11
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		2.4	9.47	9.83	0.791	< 0.037	1.75	1.6	0.346	0.386	1.41	0.064	5.38	0.153	1.49	2.39	0.149	0.191	1.31
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		92.7	664	544	37.1	4.41	18.8	70	12.9	16.3	62.1	0.485	287	8.59	70.3	58.2	8.47	5.66	0.613
Phenanthrene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		50.1	178	240	22.4	2.77	28.8	42.4	6.83	9.85	34.6	0.772	131	3.07	32.1	55.1	1.57	3.92	17
Pyrene	2,300	61,000	61,000						4,200	3			22.5	98.9	110	9.96	1.49	13.8	18.3	3.4	4.01	14.9	0.48	58.3	1.39	15.5	25	0.666	1.89	10.7

Page 5 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

1º Objective is for m-xylene
1º Objective sar for Class I groundwater.
1º Non-TACO or provisional ROs provided by the IEPA.
1- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

										IEPA Accepted		Sample Location:	P5-A5-W	P5-A5-W	P5-C5-W	P5-C5-W	P5-C5-W	P6-A4.5-W	P6-A4.5-W	P6-A5.5-W	P6-A5.5-W	P6-B5.5-W	P6-BC5.5-W	P6-CD5.5-W	P6-D5.5-W	P6-D5.5-W	P6-DE5.5-W
									Soil	Background	Project	Sample ID:	P5-A5-W (8)	P5-A5-W(20)	P5-C5-W (3)	P5-C5-W (8)	P5-C5-W (20)	P6-A4.5-W (3)	P6-A4.5-W (8)	P6-A5.5-W (8)		P6-B5.5-W (20)) P6-DE5.5-W (2
0	B	Soil Ingestion			Soil Inhalation		Indo		Component	Levels	Remediation	Sample Date:	7/13/2010	7/15/2010	7/13/2010	7/13/2010	7/13/2010	10/12/2010	10/12/2010	10/12/2010	10/14/2010	10/14/2010	10/15/2010	10/19/2010	10/19/2010	10/20/2010	10/21/2010
Constituent	Residentia	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽³⁾	for MSA	Objectives	ample Depth (feet):	8	20	3	8	20	3	8	8	21	20	20	8	8	20	20
BTEX Constituents (mg/kg	<u>a)</u>																										
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		<1.11	16.2	0.0028	< 0.0657	33.8	0.0566	< 0.123	0.0275	3.04	6.24	<0.0182	< 0.691	< 0.82	< 0.98	0.0705
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		1.5	0.593	0.0016	0.655	1.8	0.561	1.5	0.499	3.95	3.5	< 0.0912	1.2	3	<4.9	0.061
Foluene	16,000	410,000	410,000	650	650	42	240	240	12		42		<5.55	8.19	0.0014	< 0.329	59.9	0.044	< 0.616	0.032	15.8	18.4	0.037	<3.45	<4.1	<4.9	0.082
n,p-Xylenes	16,000	410,000	41,000	420 ⁽¹⁾	420(1)	5.9 ⁽²⁾	75(2)	120 ⁽²⁾	200(2)				<5.55	1.95	0.0013	< 0.329	9.9	0.052	0.16	0.246	9.55	9.51	0.02	1.5	<4.1	<4.9	0.129
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				<5.55	0.9	< 0.0051	0.15	4.57	0.216	1.54	0.777	4.44	4.48	<0.0912	2.6	1.7	<4.9	0.056
Kylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		<5.55	2.85	0.0013	0.15	14.47	0.268	1.7	1.023	13.99	13.99	0.02	4.1	1.7	<4.9	0.185
PNA Constituents (mg/kg))																										
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		3.85	1.07	< 0.447	4.65	0.158	17.6	3.25	0.375	7.59	0.539	0.47	1.41	0.25	7.14	0.015
Acenaphthylene	2,300 ⁽⁴⁾	61.000 ⁽⁴⁾	61.000(4)						85 ⁽⁴⁾	0.07	2,300		1.35	6.69	0.833	0.753	0.202	1.64	2.77	0.358	16.2	2.63	1.32	0.209	0.048	1.06	0.009
Anthracene	23.000	610.000	610.000						12.000	0.4			2.89	4.19	< 0.447	4.23	0.183	8.84	5.49	0.297	12.7	1.81	0.78	0.708	0.051	4.09	0.006
Benzo(a)anthracene	0.90	8	170						2	1.8	2		1.99	2.37	2.46	2.39	0.149	4.11	3.73	0.144	7.36	1.04	0.56	0.435	0.032	3.52	0.008
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		2.34	2.29	2.68	2.24	0.135	3.81	3.91	0.161	6.88	0.938	0.554	2.88	0.036	3.51	0.008
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		1.8	1.72	2.66	1.55	0.112	2.96	2.75	0.124	5.09	0.729	0.457	1.98	0.041	2.96	0.008
Benzo(g,h,i)perylene	2,300(4)	61,000 ⁽⁴⁾	61.000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			1.7	1.1	1.9	1.03	0.076	1.67	1.82	0.081	3.11	0.435	0.249	1.37	0.013	1.87	0.008
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		0.565	0.543	0.934	0.566	0.037	0.868	0.833	0.039	1.46	0.206	0.134	0.639	0.014	0.921	< 0.004
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<8.67	<3.98	<8.81	<3.83	< 0.76	<2.17	<1.88	<0.08	<11.5	<1.85	< 0.375	< 0.078	< 0.077	<8.23	< 0.075
Chrysene	88	780	17,000						160	2.7	88		1.61	2.34	2.46	2.28	0.144	4.11	3.74	0.149	6.99	0.965	0.535	0.44	0.035	3.51	0.007
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		<0.44	0.253	0.456	0.24	< 0.039	0.419	0.426	0.02	0.774	0.107	0.057	0.29	< 0.004	0.41	< 0.004
Fluoranthene	3,100	82,000	82,000						4,300	4.1			4.35	4.75	3.21	5.81	0.321	9.92	7.05	0.332	15.5	2.27	1.28	0.891	0.063	5.14	0.012
Fluorene	3,100	82,000	82,000						560	0.18	3,100		3.27	3.96	< 0.447	4.02	0.178	9.2	6.67	0.348	13.9	2.02	0.819	0.814	0.085	4.0	0.007
ndeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		1.21	0.786	1.51	0.758	0.057	1.28	1.32	0.062	2.39	0.33	0.175	0.907	0.009	1.39	0.004
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		4.11	18.6	<0.447	8.16	4.15	4.57	31.7	3.78	112	15.2	5.36	33	27.8	7.83	0.151
Phenanthrene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		9.43	13.5	0.658	14	0.671	29.5	17.9	1.02	42.8	6.01	3.1	17.6	0.196	14.5	0.022
Pyrene	2,300	61,000	61,000						4,200	3			5.47	7.27	3.47	6.99	0.376	13.6	11	0.489	24	3.37	1.75	1.2	0.088	9.28	0.017

Page 6 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

1º Objective is for m-xylene

1º Objective are for Class I groundwater.

1º Non-TACO or provisional ROs provided by the IEPA.

1- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

										IEPA Accepted		Sample Location:	P6-E5.5-W	P7-B1-SW	P7-BC1-SW	P7-BC1-SW	P7-C1-SW	P7-C1-SW	P7-CD1-SW	P7-CD1-SW	P7-D1-W	P7-D1-W	P7-DE1-W	P7-DE1-W	P8-H1-W	P8-H3-W	P8-H4-W	P9-D1-W
		0 "1 "			0 311 1 11				Soil	Background	Project	Sample ID:			P7-BC1-SW (3)			P7-C1-SW (21)	. (-)		P7-D1-W (3)		P7-DE1-W (3)	P7-DE1-W (8)	P8-H1-W (3)	P8-H3-W (8)	P8-H4-W (3)	P9-D1-W (8)
Constituent	Residentia	Soil Ingestion			Soil Inhalation	0	Indoo		Component to Groundwater ⁽³⁾	Levels	Remediation	Sample Date:	10/21/2010 20	2/15/2011	2/15/2011	2/15/2011	2/15/2011	2/15/2011	2/17/2011	2/17/2011	3/2/2011	3/2/2011	3/2/2011	3/2/2011	4/6/2011	4/6/2011	4/6/2011	6/7/2011
Consuluent	Residentia	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater.	for MSA	Objectives a	ample Depth (feet):	20	3	3	0	ა	21	3	0	3	0	ა	0	3	0	3	
BTEX Constituents (mg/k)	<u>a)</u>																											
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		1.72	<1.12	< 0.0227	< 0.9	<0.886	3.72	<0.774	1.25	< 0.0252	28.2	< 0.0243	2.78	0.0433	0.0445	0.0498	<1.74
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		<0.117	13.9	0.089	4.84	26	<3.86	17	16.9	0.968	63.6	0.759	4.08	0.093	<0.12	1.02	130
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		0.313	<5.62	<0.113	<4.5	<4.43	1.1	<3.87	1.5	0.082	9.27	0.078	0.28	0.031	<0.12	0.032	3.4
m,p-Xylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120(2)	200(2)				0.034	5.6	<0.113	<4.5	4.63	<3.86	3.1	10.9	0.137	78.4	0.125	3.48	0.415	<0.12	0.11	141
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				<0.117	8.85	0.03	1.3	10.3	<3.86	4.8	8.62	0.395	50.4	0.365	2.98	0.185	<0.12	0.527	88.2
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		0.034	14.45	0.03	1.3	14.93	<3.86	7.9	19.52	0.532	128.8	0.49	6.46	0.6	<0.12	0.637	229.2
DNA O																												
PNA Constituents (mg/kg) Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		0.003	53.6	4.7	15.4	34.3	2.59	22.6	40.2	1.71	4.8	1.61	10.6	1.93	0.637	35.6	0.827
Acenaphthylene									85 ⁽⁴⁾	0.13	2,300		0.005	8.95	1.37	3.25	3.35	0.512	2.14	5.91	2.89	2.01	2.73		<0.419	0.037	3.01	1.05
Anthracene	2,300 ⁽⁴⁾ 23.000	61,000 ⁽⁴⁾ 610.000	61,000 ⁽⁴⁾ 610,000						12.000	0.07	2,300		< 0.005	31.2	3.83	9.43	19.5	1.32	11.1	25.4	1.17	7.1	0.981	3.85 14.8	1.03	0.07	17.6	2.09
Benzo(a)anthracene	0.90	010,000	170						12,000	1.8	2		0.004	19.5	2.66	6.54	10.7	0.833	5.57	15.3	0.421	6	0.313	8.5	0.617	0.36	8.32	0.993
Benzo(a)pyrene	0.09	0.80	170						2	2.1	2.1		<0.004	21.3	3.2	7.19	9.81	0.893	5.35	15.5	3.01	5.63	2.74	8.55	<0.419	0.13	7.04	0.962
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		< 0.004	17.2	2.64	5.45	7.93	0.736	4.14	11.7	2.3	4.96	2.03	7.38	< 0.419	0.113	5.75	0.862
Benzo(g,h,i)perylene	2.300 ⁽⁴⁾	61.000 ⁽⁴⁾	61.000 ⁽⁴⁾						27.000 ⁽⁴⁾	1.7			0.004	10.1	1.44	2.88	3.2	0.489	2.54	7.62	2.82	1.51	2.57	2.12	< 0.419	0.055	2.35	0.282
Benzo(k)fluoranthene	2,300	78	1,700						49	1.7	9		<0.004	4.84	0.703	1.56	2.28	0.215	1.22	3.66	0.523	1.59	0.522	2.19	< 0.419	0.041	1.78	0.29
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3.600				< 0.073	<4.24	<0.849	<3.89	<7.99	<1.86	<1.95	<22.2	<2.06	<1.89	<2.1	<1.9	<8.27	<0.084	<2.07	<0.411
Chrysene	88	780	17,000						160	2.7	88		0.004	20.6	2.78	6.39	10.6	0.888	5.4	15	1.37	5.9	1.34	9	0.37	0.147	8.13	0.937
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		< 0.004	2.34	0.379	0.696	0.886	0.099	0.578	1.58	0.452	0.386	0.407	0.558	< 0.419	0.016	0.649	0.078
Fluoranthene	3,100	82,000	82,000						4,300	4.1			0.003	40.5	5.53	14.2	23.2	1.79	11.9	32.8	0.421	9.5	0.365	19.6	0.905	0.382	16.8	2.15
Fluorene	3,100	82,000	82,000						560	0.18	3,100		0.003	30.8	3.92	10.2	19.4	1.39	11.9	25.4	1.8	7.4	1.65	14.9	1.36	0.27	18.4	1.93
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		< 0.004	7.64	1.27	2.24	2.69	0.353	1.89	5.42	2.34	1.23	2.15	1.76	< 0.419	0.045	1.99	0.233
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		0.162	36.6	0.319	30	49.9	6.13	46.5	104	1.3	113	1.41	152	6.25	0.018	1.89	45.3
Phenanthrene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		0.015	104	12.9	31.6	67.6	4.76	36.5	87.3	1.58	28.8	1.33	63.3	4.44	1.34	55	5.64
Pyrene	2,300	61,000	61,000						4,200	3			0.007	65.6	8.75	22.2	34.3	2.87	18.8	50.2	2	14	1.84	31.4	1.4	0.536	24.9	3.22

Page 7 of 7 Table 5-1 - Wall Soil Confirmation Samples - BTEX and PNAs.xls

Notes:

19 Objective is for m-xylene
20 Objective are for Class I groundwater.
31 Objectives are for Class I groundwater.
32 Objective are for Class I groundwater.
33 Objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

											Sample Location:	P1-A1-W	P1-A1-W	P1-A1-W	P1-A2-W	P1-A2-W	P1-A2-W	P1-A3-W	P1-A3-W	P1-A3-W	P1-A4-W	P1-A4-W	P1-A4-W
									Soil	Project	Sample ID:		P1-A1-W (5-8)							P1-A3-W (20)	P1-A4-W	P1-A4-W	P1-A4-W
		Soil Ingestion	ı		Soil Inhalation			or Air	Component	Remediation	Sample Date:	6/30/2009	6/30/2009	7/14/2009	6/30/2009	6/30/2009	7/6/2009	7/7/2009	7/7/2009	7/7/2009	7/7/2009	7/7/2009	7/7/2009
Constituent		Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater(1)	Objectives	Sample Depth (feet):	0-3	5-8	12'	0-3	5-6	15'	3'	10'	20'	3'	8'	20'
Volatile Organic Compounds (mg/k		(2)	(2)	(2)	(2)	(2)			(2)														
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 ⁽²⁾	2,100 ⁽²⁾	2,100 ⁽²⁾	 E60	 EGO	3.4 (2)			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	4,700 ⁽²⁾	120,000 (2)	12,000 ⁽²⁾	1,200 2,000 ⁽²⁾	1,200 2,000 ⁽²⁾	1,200 2,000 ⁽²⁾	560	560 	2 3.3 ⁽²⁾			<0.831 <0.831	<5.48 <5.48	<5.720 <5.720	<5.76 <5.76	<7.34 <7.34	<2.14 <2.14	<97.7 <97.7	<1.540 <1.540	<6.72 <6.72	<0.16 <0.16	<1.35 <1.35	<2.38 <2.38
1,1,2-Trichloro-1,2,2-trifluoroethane												<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,1-Dichloro-2-propanone												<8.31	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<23.8
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,1-Dichloropropene 1,2,3-Trichlorobenzene												<0.831 <0.831	<5.48 <5.48	<5.720 <5.720	<5.76 <5.76	<7.34 <7.34	<2.14 <2.14	<97.7 <97.7	<1.540 <1.540	<6.72 <6.72	<0.16 <0.16	<1.35 <1.35	<2.38 <2.38
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 (2)			0.0001 (2)			<1.66	<11	<11.4	<115	<14.7	<4.29	195	<3.08	<13.4	<0.319	<2.7	<4.76
1,2,3-Trimethylbenzene												220	5.0	1.7	3.6	5.3	0.80	29.0	0.35	3.1	0.14	0.47	1.2
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 ⁽²⁾	0.25 (2)			18 ⁽²⁾			360	13.7	4.7	9.49	14.1	2.26	76.0	0.85	9.33	0.203	1.3	3.43
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<0.831	< 5.48	<5.720	< 5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	0.32 7,000	2.9 180,000	62 18,000	0.06 560	0.12 560	0.16 310	0.022 200	0.16 200	0.0004 17			<0.831 <0.831	<5.48 <5.48	<5.720 <5.720	<5.76 <5.76	<7.34 <7.34	<2.14 <2.14	<97.7 <97.7	<1.540 <1.540	<6.72 <6.72	<0.16 <0.16	<1.35 <1.35	<2.38 <2.38
1,2-Dichloroethane	7,000	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 (2)	0.15 (2)			10 ⁽²⁾			<0.831	3.6	1.3	2.8	3.7	0.62	<97.7	<1.540	2.8	0.087	0.33	0.96
1,3-Dichlorobenzene	(2)	(2)	(2)	(2)	(2)	(2)			(2)			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,3-Dichloropropane	1,600 ⁽²⁾	41,000 ⁽²⁾	41,000 ⁽²⁾	1,000 ⁽²⁾	1,000 ⁽²⁾	1,000 ⁽²⁾			0.83 ⁽²⁾			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
1,4-Dichlorobenzene 1-Chlorobutane	3,100 (2)	82,000 ⁽²⁾	14,000 (2)	11,000 1,200 ⁽²⁾	17,000 1,200 ⁽²⁾	340 1,200 ⁽²⁾			3.1 ⁽²⁾			<0.831 <0.831	<5.48 <5.48	<5.720 <5.720	<5.76 <5.76	<7.34 <7.34	<2.14 <2.14	<97.7 <97.7	<1.540 <1.540	<6.72 <6.72	<0.16 <0.16	<1.35 <1.35	<2.38 <2.38
2,2-Dichloropropane												<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
2-Butanone (methyl ethyl ketone)	47,000 ⁽²⁾	1,000,000 (2)	120,000 (2)	25,000 ⁽²⁾	25,000 (2)	710 (2)	23,000	23,000	17 ⁽²⁾			<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<238
2-Chlorotoluene (o-chlorotoluene)	1,600 (2)	41,000 ⁽²⁾	41,000 (2)	1,400 ⁽²⁾	1,400 ⁽²⁾	1,400 ⁽²⁾			4 (2)			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
2-Hexanone												<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<238
2-Nitropropane												<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<238
4-Chlorotoluene 4-Methyl-2-pentanone (MIBK)				3,100 ⁽²⁾	3,100 ⁽²⁾	340 ⁽²⁾						<0.831 <8.310	<5.48 <54.8	<5.720 <57.2	<5.76 <57.6	<7.34 <73.4	<2.14 <21.4	<97.7 <977	<1.540 <15.4	<6.72 <67.2	<0.16 <1.6	<1.35 <13.5	<2.38 <23.8
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<23.8
Acrolein	39 ⁽²⁾	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<16.60	<110	<114	<115	<147	<42.9	<1950	<30.8	<134	<3.19	<27	<47.6
Acrylonitrile	1.2 (2)	11 ⁽²⁾	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	<.319	<2.7	<4.76
Allyl chloride	(2)	(2)	(2)	(2)	(2)				(2)			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Bromobenzene	1,600 (2)	41,000 (2)	41,000 ⁽²⁾	100 ⁽²⁾	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			< 0.831	<5.48 <5.48	<5.720	<5.76 <5.76	<7.34 <7.34	<2.14	<97.7 <97.7	<1.540 <1.540	<6.72	<0.16 <0.16	<1.35	<2.38
Bromochloromethane Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<0.831 <0.831	<5.48	<5.720 <5.720	<5.76	<7.34	<2.14 <2.14	<97.7	<1.540	<6.72 <6.72	<0.16	<1.35 <1.35	<2.38 <2.38
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	< 0.319	<2.7	<4.76
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	1.2	<2.38
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<0.831	< 5.48	<5.720	< 5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Chlorobenzene Chloroethane	1,600	41,000	4,100	130	210	1.3	54	330	ı			<0.831 <1.660	<5.48 <11	<5.720 <11.4	<5.76 <11.5	<7.34 <14.7	<2.14 <4.29	<97.7 <195	<1.540 <3.08	<6.72 <13.4	<0.16 <0.319	<1.35 <2.7	<2.38 <4.76
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<0.831	<5.48	<5.720	2.8	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Chloromethane (methyl chloride)												<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	< 0.319	<2.7	<4.76
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			< 0.665	<4.38	<4.570	<4.61	<5.88	<1.72	<78.2	<1.23	<5.38	<0.128	<1.08	<1.9
Cyclohexanone Dibramachlaramathana (ablaradibrama	390,000 ⁽²⁾				660 ⁽²⁾	660 ⁽²⁾	630	630	150 ⁽²⁾			<16.60	<110 <5.49	<11.4 <5.720	<115 <5.76	<147 <7.24	<42.9	<1950 <07.7	<30.8	<134	<3.19	<27	<47.6
Dibromochloromethane (chlorodibromo Dibromomethane (methylene bromide)	(2)	41,000 20,000 ⁽²⁾	41,000 20,000 ⁽²⁾	1,300 2,700 ⁽²⁾	1,300 2,700 ⁽²⁾	1,300 2,700 ⁽²⁾	630	630	0.4 0.34 ⁽²⁾			<0.831 <0.831	<5.48 <5.48	<5.720 <5.720	<5.76 <5.76	<7.34 <7.34	<2.14 <2.14	<97.7 <97.7	<1.540 <1.540	<6.72 <6.72	<0.16 <0.16	<1.35 <1.35	<2.38 <2.38
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 ⁽²⁾	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	<0.319	<2.7	<4.76
Ethyl acetate	70,000 (2)	1,000,000 (2)	1,000,000 (2)		10,000 (2)	10,000 (2)			26 (2)			<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<23.8
Ethyl ether	16,000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 (2)	8,800 (2)	8,800 (2)			6.1 ⁽²⁾			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Ethyl methacrylate												<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.38
Heptane												<3.320	<21.90	<22.9 <5.720	<23	<29.4	<8.58	<391 <97.7	< 6.17	<26.9	<0.639	< 5.41	<9.52
Hexachlorobutadiene												<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	\91.1	<1.540	<6.72	<0.16	<1.35	<2.38

Page 1 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

10 Objectives are for Class I Groundwater.

12 Non-TACO or provisional ROs provided by the IEPA.

13 Non-TACO or provisional ROs provided by the IEPA.

14 No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

15 Concentration exceeds one or more project remediation objective.

											Sample Location:	P1-A1-W	P1-A1-W	P1-A1-W	P1-A2-W	P1-A2-W	P1-A2-W	P1-A3-W	P1-A3-W	P1-A3-W	P1-A4-W	P1-A4-W	P1-A4
									Soil	Project		, ,	P1-A1-W (5-8)			P1-A2-W (5-6)			. ,	P1-A3-W (20)	P1-A4-W	P1-A4-W	P1- <i>A</i>
		Soil Ingestion			Soil Inhalatio			or Air	Component	Remediation	Sample Date:	6/30/2009	6/30/2009	7/14/2009	6/30/2009	6/30/2009	7/6/2009	7/7/2009	7/7/2009	7/7/2009	7/7/2009	7/7/2009	7/7/
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	0-3	5-8	12'	0-3	5-6	15'	3'	10'	20'	3'	8'	2
Hexachloroethane	78	2,000	2,000				160	160	0.5			<0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2.
odomethane												<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	< 0.319	<2.7	<4
sopropylbenzene (cumene)	7,800 ⁽²⁾	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			< 0.831	2.5	<5.720	2.1	2.6	<2.14	<97.7	<1.540	<6.72	0.099	<1.35	<2
Methacrylonitrile												<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<2
Methyl Methacrylate												< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2
Methyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.332	<2.19	<2.290	<2.3	<2.94	<0.858	<39.1	< 0.617	<2.690	< 0.639	< 0.541	<0
Methylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 (2)	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			<1.660	<11	<11.4	<11.5	<14.7	<4.29	<195	<3.08	<13.4	< 0.319	<2.7	<4
Methylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		13.8	422	151	256	402	59.6	1450	21.1	205	12.6	<50.9	1
n-Butylbenzene												<0.831	4.7	<5.720	4.6	5.0	<2.14	40.0	<0.54	<6.72	0.197	0.62	<2
n-Hexane				290 (2)	290 (2)	15 ⁽²⁾						<3.320	<21.9	<22.9	<23	<29.4	<8.58	<391	<6.17	<26.9	< 0.639	<5.41	<9
litrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<16.60	<110	<11.4	<115	<147	<42.9	<1950	<30.8	<134	<3.19	<27	<4
n-Propylbenzene												< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	0.09	<1.35	<2
Pentachloroethane												< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2
o-Isopropyltoluene												< 0.831	1.3	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	0.057	<1.35	<2
Propionitrile												<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<2
ec-Butylbenzene												< 0.831	<5.48	<5.720	<5.76	<7.34	1.6	<97.7	<1.540	6.7	< 0.16	<1.35	<2
Styrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	1
ert-Butylbenzene												< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	< 0.16	<1.35	<2
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	< 0.16	<1.35	<2
Tetrahydrofuran												<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<1.35	<2
rans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	< 0.16	<1.35	<2
rans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			< 0.665	<4.38	<4.570	<4.61	<5.88	<1.72	<78.2	<1.23	<5.38	<0.128	<1.08	<
richloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2
richlorofluoromethane	23,000 (2)	610,000 (2)	140,000 (2)	850 ⁽²⁾	1,400 (2)	88 (2)	31	190	34 (2)			< 0.831	<5.48	<5.720	<5.76	<7.34	<2.14	<97.7	<1.540	<6.72	<0.16	<1.35	<2
/inyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<8.310	<54.8	<57.2	<57.6	<73.4	<21.4	<977	<15.4	<67.2	<1.6	<13.5	<2
/inyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			< 0.332	<2.19	<2.290	<2.3	<2.94	< 0.858	<39.1	< 0.617	<2.69	< 0.0639	< 0.541	<0

Page 2 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Constituent	Residential	Soil Ingestior Commercial		n Residential	Soil Inhalatio	on Construction		loor Air Commercial	Soil Component to Groundwater ⁽¹⁾	Project Remediation Objectives	Sample Location: Sample ID: Sample Date: Sample Depth (feet):	P1-A5-W P1-A5-W(3) 7/15/2009 3	P1-A5-W P1-A5-W(8) 7/15/2009 8	P2-A1-W P2-A1-W (3) 10/23/2009 3	P2-A1-W P2-A1-W (8) 10/23/2009 8	P2-A1-W P2-A1-W (20) 10/27/2009 20	P2-A2-W P2-A2-W (3) 10/27/2009 3	P2-A2-W P2-A2-W (8) 10/27/2009 8	P2-A3-W P2-A3-W (3) 10/26/2009 3	P2-A3-W P2-A3-W (8) 10/26/2009 8	P2-A3-W P2-A3-W (20) 10/27/2009 20	P3-A1-W P3-A1-W (3) 1/12/2010 3	P3-A1-W P3-A1-W (10) 1/12/2010 10	P3-A1-W P3-A1-W (15) 1/12/2010 15	P3-A2-W P3-A2-W (8) 1/12/2010 8	P3-A3-W P3-A3-W (3) 1/12/2010 3	P3-A3-W P3-A3-W 1/12/20 6
latile Organic Compounds (mg/kg	_	(2)	(2)	(2)	(2)	(2)			. (2)																		
,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 ⁽²⁾	2,100 ⁽²⁾	2,100 (2)		560	3.4 ⁽²⁾			<5.17 <5.17	<4.16 <4.16	<20	< 5.69	<0.966	<1.1	<0.63 <0.63	<4.95	<4.54	< 9.75	<6.82	<5.12	<0.443 <0.443	<6.33	< 0.485	<0.13
,1-Trichloroethane ,2,2-Tetrachloroethane	4,700 ⁽²⁾	120,000 (2)	12,000 (2)	1,200 2,000 ⁽²⁾	1,200 2,000 ⁽²⁾	1,200 2,000 ⁽²⁾	560	560	3.3 (2)			<5.17 <5.17	<4.16	<20 <20	<5.69 <5.69	<0.966 <0.966	<1.1 <1.1	< 0.63	<4.95 <4.95	<4.54 <4.54	<9.75 <9.75	<6.82 <6.82	<5.12 <5.12	<0.443	<6.33 <6.33	<0.485 <0.485	<0.137 <0.137
,2-Trichloro-1,2,2-trifluoroethane	4,700	120,000	12,000	2,000	2,000	2,000			J.J			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.13
,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.13
-Dichloro-2-propanone												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1.3
-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.13
-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.1
-Dichloropropene												<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.1
2,3-Trichlorobenzene	(2)	(2)		 (2)	 (2)	 (2)			(2)			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 ⁽²⁾	730 ⁽²⁾	730 (2)			0.0001 (2)			<10.3	<8.33	<40.1 11	<11.4 1.7	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	<0.971	<0.2 0.32
,3-Trimethylbenzene ,4-Trichlorobenzene	 780	20,000	2,000	3,200	3,200	920	220	980				6.25 <5.17	4.42 <4.16	<20	< 5.69	0.57 <0.966	<1.1 <1.1	<0.63 <0.63	2.2 <4.95	<4.54 <4.54	3.2 <9.75	2.1 <6.82	6.98 <5.12	1.89 <0.443	<6.33 <6.33	2.87 <0.485	<0.1
4-Trimethylbenzene	3,900 ⁽²⁾	100,000 (2)	100.000 (2)	73 ⁽²⁾	120 ⁽²⁾	0.25 (2)	220	900	18 ⁽²⁾			16.4	12	9.2	<5.69	1.54	0.34	<0.63	1.6	2.4	2.2	2.7	6.89	2.01	<6.33	2.75	0.0
Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
ichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<5.17	<4.16	<20	<5.69	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
chloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
ichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 (2)			10 ⁽²⁾			3.8	3.0	<20	<5.69	0.44	<1.1	< 0.63	<4.95	1.8	<9.75	<6.82	<5.12	0.23	<6.33	<0.485	<0.
ichlorobenzene	1,600 ⁽²⁾	41.000 ⁽²⁾	41,000 ⁽²⁾	1.000 (2)	1.000 (2)	1.000 (2)			0.83 (2)			<5.17 <5.17	<4.16	<20 <20	<5.69	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12 <5.12	<0.443	<6.33	<0.485	<0.
ichloropropane ichlorobenzene	1,000 ` ′	41,000	41,000	11,000	17,000	340			2			<5.17 <5.17	<4.16 <4.16	<20 <20	<5.69 <5.69	<0.966 <0.966	<1.1 <1.1	<0.63 <0.63	<4.95 <4.95	<4.54 <4.54	<9.75 <9.75	<6.82 <6.82	<5.12 <5.12	<0.443 <0.443	<6.33 <6.33	<0.485 <0.485	<0. <0.
lorobutane	3,100 ⁽²⁾	82,000 ⁽²⁾	14,000 (2)	1.200 (2)	1,200 ⁽²⁾	1,200 ⁽²⁾			3.1 ⁽²⁾			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
chloropropane												<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
anone (methyl ethyl ketone)	47,000 ⁽²⁾	1,000,000 (2)	120,000 (2)	25,000 (2)	25,000 (2)	710 ⁽²⁾	23,000	23,000	17 (2)			<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	0.
rotoluene (o-chlorotoluene)	1,600 (2)	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4 (2)			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
anone												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1.
ppropane												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1.3
orotoluene				0.400 (2)	0.400 (2)	240 (2)						<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
hyl-2-pentanone (MIBK)	70.000			3,100 ⁽²⁾ 100,000	3,100 ⁽²⁾	340 ⁽²⁾	100.000	100,000	 25	7,800		<51.7 <51.7	<41.6 <41.6	<200 <200	<56.9 <56.9	<9.66	<11	<6.3 <6.3	<49.5 <49.5	<45.4 <45.4	<97.5 <97.5	<68.2 <68.2	<51.2 <51.2	<4.43	<63.3 <63.3	<4.85 <4.85	<1.3 <1.3
ne in	70,000 39 ⁽²⁾	1.000 (2)	1,600 (2)	0.16 (2)	100,000 0.26 ⁽²⁾	100,000 0.017 ⁽²⁾	100,000	100,000	25 0.014 ⁽²⁾	7,800		<103	<83.3	<200 <401	<56.9 <114	<9.66 <19.3	<11 <22	<0.3 <12.6	<49.5 <99	<45.4 <90.8	<97.5 <195	<08.2 <136	<01.2 <102	<4.43 <8.85	<03.3 <127	<4.85 <9.71	<2.7
onitrile	1.2 ⁽²⁾	11 (2)	230 (2)	0.28 (2)	0.54 (2)	0.17 ⁽²⁾			0.0006 (2)			<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	<0.971	<0.27
chloride												<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
obenzene	1,600 (2)	41,000 (2)	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.1
nochloromethane												<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
odichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
noform	81	720	16,000	53	100	140	49	360	0.8			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
nomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	< 9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	<0.971	<0.2
oon disulfide oon tetrachloride	7,800 5	200,000 44	20,000 410	720 0.3	720 0.64	0.9	0.021	230 0.15	32 0.07			<5.17 <5.17	<4.16 <4.16	<20 <20	<5.69 <5.69	<0.966 <0.966	<1.1 <1.1	<0.63 <0.63	<4.95 <4.95	<4.54 <4.54	<9.75 <9.75	<6.82 <6.82	<5.12 <5.12	<0.443 <0.443	<6.33 <6.33	<0.485 <0.485	1.1 <0.1
obenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<5.17	<4.16	<20	<5.69	<0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
oethane												<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	<0.971	<0.
oform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
omethane (methyl chloride)												<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	< 0.971	<0.
2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	<0.485	<0.
3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<4.14	<3.33	<16	<4.55	<0.773	<0.88	<0.504	<3.96	<3.63	<7.8	<5.45	<4.09	<0.354	<5.06	<0.388	<0
nexanone	,	1,000,000 (2)			660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<103	<83.3	<401	<114	<19.3	<22	<12.6	<99	<90.8	<195	<136	<102	<8.85	<127	<9.71	<2
mochloromethane (chlorodibromethane (methylene bromide)	1,600 780 ⁽²⁾	41,000 20,000 ⁽²⁾	41,000 20,000 ⁽²⁾	1,300 2,700 ⁽²⁾	1,300 2,700 ⁽²⁾	1,300 2,700 ⁽²⁾	630	630	0.4 0.34 ⁽²⁾			<5.17	<4.16	<20 <20	<5.69 <5.60	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12 <5.12	<0.443	<6.33	<0.485 <0.485	<0.
mometnane (metnylene bromide) orodifluoromethane		410,000 (2)			310 ⁽²⁾	2,700 ⁽²⁾	6.8	4.2	43 ⁽²⁾			<5.17 <10.3	<4.16 <8.33	<20 <40.1	<5.69 <11.4	<0.966 <1.93	<1.1 <2.2	<0.63 <1.26	<4.95 <9.9	<4.54 <9.08	<9.75 <19.5	<6.82 <13.6	<5.12 <10.2	<0.443 <0.885	<6.33 <12.7	<0.485 <0.971	<0.: <0.:
acetate	,	1,000,000			10,000 ⁽²⁾	10,000 ⁽²⁾			26 ⁽²⁾			<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1
ether	16,000 ⁽²⁾			8,800 ⁽²⁾	8,800 ⁽²⁾	8,800 ⁽²⁾			6.1 ⁽²⁾			<5.17	<4.16	<20	<5.69	< 0.966	<1.1	<0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
methacrylate												<5.17	<4.16	<20	<5.69	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
ane												<20.7	<16.7	<80.1	<22.7	<3.86	<4.4	<2.52	<19.8	<18.2	<39	<27.3	<20.5	<1.77	<25.3	<1.94	<0.
achlorobutadiene												<5.17	<4.16	<20	<5.69	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.1
es: Objectives are for Class I Ground Non-TACO or provisional ROs pro No objective has been published fo Concentration exceeds one or	ovided by the or this consti	tuent by the IE		nple was not a	analyzed for thi	is constituent.																					

Page 3 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

											Sample Location:	P1-A5-W	P1-A5-W	P2-A1-W	P2-A1-W	P2-A1-W	P2-A2-W	P2-A2-W	P2-A3-W	P2-A3-W	P2-A3-W	P3-A1-W	P3-A1-W	P3-A1-W	P3-A2-W	P3-A3-W	P3-A3
									Soil	Project	Sample ID:	P1-A5-W(3)	P1-A5-W(8)	P2-A1-W (3)	P2-A1-W (8)	P2-A1-W (20)	P2-A2-W (3)	P2-A2-W (8)	P2-A3-W (3)	P2-A3-W (8)	P2-A3-W (20)	P3-A1-W (3)	P3-A1-W (10)	P3-A1-W (15)	P3-A2-W (8)	P3-A3-W (3)	P3-A3-
		Soil Ingestion			Soil Inhalation		Inde	oor Air	Component	Remediation	Sample Date:	7/15/2009	7/15/2009	10/23/2009	10/23/2009	10/27/2009	10/27/2009	10/27/2009	10/26/2009	10/26/2009	10/27/2009	1/12/2010	1/12/2010	1/12/2010	1/12/2010	1/12/2010	1/12/
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	3	8	3	8	20	3	8	3	8	20	3	10	15	8	3	
exachloroethane	78	2,000	2,000				160	160	0.5			<5.17	<4.16	<20	<5.69	<0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	<0.443	<6.33	<0.485	<0.
domethane												<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	<0.885	<12.7	< 0.971	<0.
opropylbenzene (cumene)	7,800 ⁽²⁾	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			<2.9	<1.9	<20	<5.69	< 0.966	<1.1	< 0.63	1	1.9	<9.75	<6.82	<5.12	0.24	<6.33	0.19	0.1
ethacrylonitrile												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1
ethyl Methacrylate												<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
ethyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<2.07	<1.67	<8.01	<2.27	< 0.386	< 0.44	< 0.252	<1.98	<1.82	<3.9	<2.73	<2.05	< 0.177	<2.53	< 0.194	<0.
thylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 (2)	6,500 (2)	6,500 (2)	6,500 (2)			0.89 (2)			<10.3	<8.33	<40.1	<11.4	<1.93	<2.2	<1.26	<9.9	<9.08	<19.5	<13.6	<10.2	< 0.885	<12.7	< 0.971	<0
ethylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	4.4	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
phthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		357	321	500	93	33.2	28.8	13.4	116	181	181	149	357	122	32.3	218	1
Butylbenzene												<12.3	3.9	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
Hexane				290 (2)	290 ⁽²⁾	15 ⁽²⁾						<20.7	<16.7	<80.1	<22.7	<3.86	<4.4	<2.52	<19.8	<18.2	<39	<27.3	<20.5	<1.77	<25.3	<1.94	<0
robenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<103	<83.3	<401	<114	<19.3	<22	<12.6	<99	<90.8	<195	<136	<102	<8.85	<127	<9.71	<2
Propylbenzene												<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	0.19	<6.33	0.24	0.
ntachloroethane												<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<(
sopropyltoluene												1.3	0.92	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
opionitrile												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1
ec-Butylbenzene												<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
vrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	0.679	<6.33	2.11	0
rt-Butylbenzene												<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
etrahydrofuran												<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1
ans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<5.17	<4.16	<20	< 5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
ans-1.3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<4.14	<3.33	<16	<4.55	< 0.773	<0.88	< 0.504	<3.96	<3.63	<7.8	<5.45	<4.09	< 0.354	<5.06	<0.388	<0
richloroethene	58	520	1.200	5	8.9	12	0.26	1.9	0.06			<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0.
richlorofluoromethane	23,000 (2)	610,000 (2)	140,000 (2)	850 ⁽²⁾	1,400 (2)	88 (2)	31	190	34 ⁽²⁾			<5.17	<4.16	<20	<5.69	< 0.966	<1.1	< 0.63	<4.95	<4.54	<9.75	<6.82	<5.12	< 0.443	<6.33	< 0.485	<0
nyl acetate	78.000	1.000.000	200.000	1.000	1.600	10	270	1,600	170 ⁽²⁾			<51.7	<41.6	<200	<56.9	<9.66	<11	<6.3	<49.5	<45.4	<97.5	<68.2	<51.2	<4.43	<63.3	<4.85	<1
nyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<2.07	<1670	<8.01	<2.27	< 0.386	< 0.44	<0.252	<1.98	<1.82	<3.9	<2.73	<2.05	< 0.177	<2.53	< 0.194	<0.0

Page 4 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Constituent	Residential	Soil Ingestion Commercial	Construction	Residential	Soil Inhalatio Commercial	on Construction		oor Air Commercial	Soil Component to Groundwater ⁽¹⁾	Project Remediation Objectives	Sample Location: Sample ID: Sample Date: Sample Depth (feet):	P3-A4-W P3-A4-W (3) 1/13/2010 3	P3-A4-W P3-A4-W (10) 1/13/2010 10	P3-B.5-W P3-B.5-W (8) 1/14/2010 8	P3-B.5-W P3-B.5-W (15) 1/14/2010 15	P3-C1-W P3-C1-W (10) 1/14/2010 10	P3-C1-W P3-C1-W (18) 1/14/2010 18	P3-A.5-W P3-A.5-W (8) 1/20/2010 8	P3-A.5-W P3-A.5-W (20) 1/20/2010 20	P3-B-W P3-B-W (8) 1/20/2010 8	P3-B-W P3-B-W (20) 1/20/2010 20	P3-C.5-W P3-C.5-W (8) 1/20/2010 8	P3-C.5-W P3-C.5-W (20) 1/20/2010 20	P3-D-W P3-D-W (8) 1/20/2010 8	P3-D.5-W P3-D.5-W (8) 1/27/2010 8	P3-D.5 8) P3-D.5-V 1/27/2 20
olatile Organic Compounds (mg/kg	=	(2)	(2)	(2)	(2)	(2)			(2)																	
1,1,2-Tetrachloroethane	2,300 ⁽²⁾	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 ⁽²⁾	2,100 (2)	2,100 (2)			3.4 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.1
1,1-Trichloroethane	4 700 (2)	120 000 (2)	12 000 (2)	1,200 2,000 ⁽²⁾	1,200	1,200 2,000 ⁽²⁾	560	560	2			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.
1,2,2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000	2,000 (2)	2,000 `			3.3 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.
1,2-Trichloro-1,2,2-trifluoroethane	240	0.000	0.000	4 000	4 000	4.000			0.00			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.
1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.
1-Dichloro-2-propanone	7 000	200,000	200.000	1 200	1 700	120			22			<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	<5
1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130		77	23			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5.
1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5
1-Dichloropropene												< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<5
2,3-Trichlorobenzene	0.092 (2)	0.82 (2)	18	730 ⁽²⁾	730 (2)	730 (2)			0.0001 (2)			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4 <56.8	<4.53	<5
2,3-Trichloropropane		0.02	10	730 **	730	730 **			0.0001			< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4		< 9.06	<10
2,3-Trimethylbenzene	700	20,000	0.000	2 200	2 200		200					1.89	<5.02	<26.1	<20.5	41.6	41.9	<26	<3.26	<27.2	<20.9	4.86	<27.2	14	<4.53	9.
2,4-Trichlorobenzene	780	20,000	2,000	3,200 73 ⁽²⁾	3,200	920	220	980	18 ⁽²⁾			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<{
,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	13 1	120 (2)	0.25 (2)	0.0070	0.054				0.961	<5.02	33.8	<20.5	137	132	12	<3.26	8.5	<20.9	13	<27.2	34.8	2.4	2
-Dibromo-3-chloropropane	0.46	4	89	11	1/	0.11	0.0073	0.054	0.002			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
Dichloroethane	/	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 (2)			10 (2)			<0.157	<5.02	12	<20.5	44.4	41	<26	<3.26	<27.2	<20.9	3.2	<27.2	9.8	0.92	(
-Dichlorobenzene	4 000 (2)	(2)	(2)	(2)	4 000 (2)	(2)			(2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dichloropropane	1,600 ⁽²⁾	41,000 ⁽²⁾	41,000 ⁽²⁾	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dichlorobenzene	(2)	(2)	(2)	11,000	17,000	340			2			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
hlorobutane	3,100 ⁽²⁾	82,000 ⁽²⁾	14,000 ⁽²⁾	1,200 (2)	1,200 (2)	1,200 (2)			3.1 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
-Dichloropropane				(2)								<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
utanone (methyl ethyl ketone)	47,000 (2)	1,000,000 (2)	120,000 (2)	25,000 (2)	25,000 (2)	710 (2)	23,000	23,000	17 (2)			0.38	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	•
hlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4 (2)			<0.157	<5.02	<26.1	<20.5	4.8	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
exanone												<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	<
litropropane												<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	<
Chlorotoluene												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
Methyl-2-pentanone (MIBK)				3,100 ⁽²⁾	3,100 ⁽²⁾	340 ⁽²⁾						<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	<
etone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	<
rolein	39 (2)	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<3.14	<100	<522	<410	<462	<832	<519	<65.3	<544	<418	<90.4	<544	<568	<90.6	<
rylonitrile	1.2 ⁽²⁾	11 ⁽²⁾	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	<
lyl chloride												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
omobenzene	1,600 ⁽²⁾	41,000 ⁽²⁾	41,000 ⁽²⁾	100 ⁽²⁾	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
omochloromethane												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
omodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
omoform	81	720	16,000	53	100	140	49	360	0.8			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
momethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	<
rbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			0.515	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
bon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	•
orobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
oroethane												< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	<
proform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
romethane (methyl chloride)												< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	<
1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<0.126	<4.01	<20.9	<16.4	<18.5	<33.3	<20.8	<2.61	<21.8	<16.7	<3.61	<21.7	<22.7	<3.62	<
ohexanone	390,000 (2)	1,000,000 (2)		660 (2)	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<3.14	<100	<522	<410	<462	<832	<519	<65.3	<544	<418	<90.4	<544	<568	<90.6	
romochloromethane (chlorodibrome	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
omomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
lorodifluoromethane		410,000 (2)	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	
/l acetate		1,000,000 (2)			10,000 (2)	10,000 (2)			26 ⁽²⁾			<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	
l ether		410,000 (2)		8,800 ⁽²⁾	8,800 ⁽²⁾	8,800 ⁽²⁾			6.1 ⁽²⁾			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
/I methacrylate												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
otane												<0.628	<20.1	<104	<82.1	<92.3	<166	<104	<13.1	<109	<83.6	<18.1	<109	<114	<18.1	<
xachlorobutadiene												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	<
es: Objectives are for Class I Grounds Non-TACO or provisional ROs pro No objective has been published for	vided by the				1 16 11:																					

Page 5 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

											Sample Location:	P3-A4-W	P3-A4-W	P3-B.5-W	P3-B.5-W	P3-C1-W	P3-C1-W	P3-A.5-W	P3-A.5-W	P3-B-W	P3-B-W	P3-C.5-W	P3-C.5-W	P3-D-W	P3-D.5-W	P3-D
									Soil	Project	Sample ID:	P3-A4-W (3)	P3-A4-W (10)	P3-B.5-W (8)	P3-B.5-W (15)	P3-C1-W (10)	P3-C1-W (18)	P3-A.5-W (8)	P3-A.5-W (20)	P3-B-W (8)	P3-B-W (20)	P3-C.5-W (8)	P3-C.5-W (20)	P3-D-W (8)	P3-D.5-W (8)	
		Soil Ingestion			Soil Inhalation			oor Air	Component	Remediation	Sample Date:	1/13/2010	1/13/2010	1/14/2010	1/14/2010	1/14/2010	1/14/2010	1/20/2010	1/20/2010	1/20/2010	1/20/2010	1/20/2010	1/20/2010	1/20/2010	1/27/2010	1/2
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	3	10	8	15	10	18	8	20	8	20	8	20	8	8	
exachloroethane	78	2,000	2,000				160	160	0.5			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
odomethane												< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	•
opropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			0.936	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
ethacrylonitrile												<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	
ethyl Methacrylate												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
ethyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<0.0628	<2.01	<10.4	<8.21	<9.23	<16.6	<10.4	<1.31	<10.9	<8.36	<1.81	<10.9	<11.4	<1.81	
ethylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 ⁽²⁾			< 0.314	<10	<52.2	<41	<46.2	<83.2	<51.9	<6.53	<54.4	<41.8	<9.04	<54.4	<56.8	<9.06	
ethylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	5.7	0.82	5.7	<20.9	0.93	<27.2	<28.4	<4.53	
phthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		40.2	52	906	54.5	3200	1800	246	9.71	211	29	216	130	1000	44.7	
Butylbenzene												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	1.4	<27.2	<28.4	<4.53	
Hexane				290 ⁽²⁾	290 ⁽²⁾	15 ⁽²⁾						0.28	<20.1	<104	<82.1	<92.3	<166	<104	<13.1	<109	<83.6	<18.1	<109	<114	<18.1	
trobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<3.14	<100	<522	<410	<462	<832	<519	<65.3	<544	<418	<90.4	<544	<568	<90.6	
Propylbenzene												1.22	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
ntachloroethane												< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
sopropyltoluene												<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
opionitrile												<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	
ec-Butylbenzene												0.648	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
lyrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	7.4	<4.53	
t-Butylbenzene												< 0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
etrahydrofuran												<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	
ns-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
ns-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<0.126	<4.01	<20.9	<16.4	<18.5	<33.3	<20.8	<2.61	<21.8	<16.7	<3.61	<21.7	<22.7	<3.62	
chloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
chlorofluoromethane	23,000 ⁽²⁾	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 ⁽²⁾	31	190	34 (2)			<0.157	<5.02	<26.1	<20.5	<23.1	<41.6	<26	<3.26	<27.2	<20.9	<4.52	<27.2	<28.4	<4.53	
nyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<1.57	<50.2	<261	<205	<231	<416	<260	<32.6	<272	<209	<45.2	<272	<284	<45.3	
yl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			< 0.0628	<2.01	<10.4	<8.21	<9.23	<16.6	<10.4	<1.31	<10.9	<8.36	<1.81	<10.9	<11.4	<1.81	

Page 6 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

		Soil Ingestion			Soil Inhalatio	n	Indoor	r Air	Soil Component	Project Remediation	Sample Location: Sample ID: Sample Date:	P3-E-W P3-E-W (8) 1/27/2010	P3-E-W P3-E-W (20) 1/27/2010	P3-E.5-W P3-E.5-W (8) 1/27/2010	P3-E.5-W P3-E.5-W (20) 1/27/2010	P3-F-W P3-F-W (8) 1/27/2010	P3-F-W P3-F-W (20) 1/27/2010	P3-A1.5-W P3-A1.5-W (8) 1/27/2010	P3-A1.5-W P3-A1.5-W (20) 1/27/2010	P3-A2.5-W P3-A2.5-W (3) 1/27/2010	P3-A2.5-W P3-A2.5-W (8) 1/27/2010	P3-A2.5-W P3-A2.5-W (20) 1/27/2010	P3-F.5-W P3-F.5-W (3) 2/3/2010	P3-F.5-W P3-F.5-W (8) 2/3/2010	P3-F.5-W P3-F.5-W (20) 2/3/2010	P3-G-W P3-G-W (3) 2/4/2010
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial to 0	Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	8	20	8	20	8	20	3	8	20	3	8	20	3
Volatile Organic Compounds (mg/k	<u>q)</u>																									
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 ⁽²⁾	2,100 ⁽²⁾	2,100 ⁽²⁾			3.4 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,1,1-Trichloroethane	(2)	(2)	(2)	1,200	1,200	1,200	560	560	2			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,1,2-Trichloro-1,2,2-trifluoroethane	240	0.000	0.000	4 000	4 000	4.000			0.00			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<4.25	<2.09 <20.9	<31.8 <318	<2.45	<2.28 <22.8	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99 <50.0	<4.64 <46.4	<4.08	<6.36 <63.6
1,1-Dichloro-2-propanone 1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<42.5 <4.25	<2.09	<31.8	<24.5 <2.45	<2.28	<46.6 <4.66	<51.2 <5.12	<43.3 <4.33	<1.61 <0.161	<53.4 <5.34	<43 <4.3	<59.9 <5.99	<4.64	<40.8 <4.08	<6.36
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12 <5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,1-Dichloropropene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2,3-Trichlorobenzene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 ⁽²⁾			0.0001 (2)			<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	< 0.322	<10.7	<8.59	<12	<9.28	<8.16	<12.7
1,2,3-Trimethylbenzene												4.0	0.83	56.5	3.55	7.88	1.4	10.4	1.2	1.94	1.7	<4.3	<5.99	<4.64	<4.08	2.4
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	< 5.99	<4.64	<4.08	<6.36
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 (2)	0.25 (2)			18 ⁽²⁾			11.4	2.38	159	10.1	27.5	4.4	37.5	4.2	<64.3	5.2	1.0	1.3	1.5	<4.08	2.1
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 (2)	72 ⁽²⁾	0.15 (2)			10 ⁽²⁾			3.4	0.8	42.6	2.93	9.95	1.4	11.2	1.4	2.53	1.4	<4.3	<5.99	<4.64	<4.08	<6.36
1,3-Dichlorobenzene	4 000 (2)	44 000 (2)	44 000 (2)	4 000 (2)	4 000 (2)	4 000 (2)			0.00 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	< 5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1,3-Dichloropropane	1,600 (2)	41,000 (-)	41,000 (2)	1,000 ⁽²⁾	1,000 ⁽²⁾	1,000 (2)			0.83 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
,4-Dichlorobenzene	2 100 (2)	92 000 (2)	14,000 ⁽²⁾	11,000	17,000 1,200 ⁽²⁾	340			3.1 ⁽²⁾			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000	1,200 (2)	1,200 1	1,200 (2)			3.1 17			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99 <5.00	<4.64 <4.64	<4.08	<6.36
2,2-Dichloropropane	47,000 ⁽²⁾	1,000,000 (2)	120,000 (2)	25,000 ⁽²⁾	25,000 ⁽²⁾	710 (2)	33 000	22 000	17 ⁽²⁾			<4.25 <42.5	<2.09 <20.9	<31.8 <318	<2.45 <24.5	<2.28 <22.8	<4.66 <46.6	<5.12 <51.2	<4.33	<0.161 <1.61	<5.34 <53.4	<4.3 <43	<5.99	<46.4	<4.08 <40.8	<6.36 <63.6
2-Butanone (methyl ethyl ketone) 2-Chlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41.000 (2)	1.400 (2)	1,400 ⁽²⁾	1,400 ⁽²⁾	23,000	23,000	4 (2)			<42.5 <4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12 <5.12	<43.3 <4.33	<0.161	<5.34 <5.34	<4.3	<59.9 <5.99	<4.64	<4.08	<6.36
2-Hexanone				1,400	1,400	1,400						<42.5	<20.9	<31.0	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	<63.6
2-Nitropropane												<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	<63.6
1-Chlorotoluene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
1-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 (2)	340 ⁽²⁾						<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	<63.6
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	<63.6
Acrolein	39 ⁽²⁾	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<84.9	<41.8	<636	<49	<45.7	<93.3	<102	<86.6	<3.22	<107	<85.9	<120	<92.8	<81.6	<127
Acrylonitrile	1.2 (2)	11 (2)	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	< 0.322	<10.7	<8.59	<12	<9.28	<8.16	<12.7
Allyl chloride												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	< 5.99	<4.64	<4.08	<6.36
Bromobenzene	1,600 ⁽²⁾	41,000 ⁽²⁾	41,000 ⁽²⁾	100 ⁽²⁾	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	< 5.99	<4.64	<4.08	<6.36
Bromochloromethane												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	<0.322	<10.7	<8.59	<12	<9.28	<8.16	<12.7
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	< 6.36
Chloroethane	400	040	0.000		0.54	0.70	0.000					<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	< 0.322	<10.7	<8.59	<12	<9.28	<8.16	<12.7
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	< 5.34	<4.3	< 5.99	<4.64	<4.08	< 6.36
Chloromethane (methyl chloride)	700	20.000	20.000	1 200	1.200	1.200	700	700	0.4			<8.49 <4.25	<4.18 <2.09	<63.6 <31.8	<4.9	<4.57 <2.28	<9.33 <4.66	<10.2 <5.12	<8.66 <4.33	<0.322 <0.161	<10.7 <5.34	<8.59 <4.3	<12 <5.99	<9.28 <4.64	<8.16 <4.08	<12.7 <6.36
is-1,2-Dichloroethene	780 6.4	20,000 57	1,200	1,200	1,200 2.1	0.39	700 0.061	700 0.45	0.4			<4.25 <3.4	<2.09 <1.67	<31.8 <25.5	<2.45 <1.96	<2.28 <1.83	<4.66 <3.73	<5.12 <4.1	<4.33 <3.46	<0.161 <0.129	<5.34 <4.27	<4.3 <3.44	<5.99 <4.79	<4.64 <3.71	<4.08 <3.27	< 5.09
is-1,3-Dichloropropene		1,000,000 (2)			660 ⁽²⁾	660 ⁽²⁾	0.061	0.40	150 ⁽²⁾			<3.4 <84.9	<1.67 <41.8	<25.5 <636	<1.96 <49	<1.83 <45.7	<3.73 <93.3	<4.1 <102	<3.46 <86.6	<3.22	<4.27 <107	<3.44 <85.9	<4.79 <120	<3.71 <92.8	<3.27 <81.6	<5.09 <127
Cyclohexanone Dibromochloromethane (chlorodibrom		41,000	41,000	1,300	1,300	1,300	630	630	0.4			<84.9 <4.25	<2.09	<030 <31.8	<2.45	<45.7 <2.28	<93.3 <4.66	< 102 < 5.12	<4.33	<0.161	<5.34	<05.9 <4.3	<5.99	<92.8 <4.64	<4.08	< 12 <i>1</i> < 6.36
Dibromomethane (methylene bromide	(2)	20,000 (2)	20,000 (2)	2,700 ⁽²⁾	2,700 ⁽²⁾	2,700 ⁽²⁾			0.4			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12 <5.12	<4.33	<0.161	<5.34 <5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Dichlorodifluoromethane	16,000 ⁽²⁾		180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 ⁽²⁾			<4.25 <8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	<0.322	<10.7	<4.5 <8.59	<12	<9.28	<8.16	<12.7
thyl acetate	70,000 (2)	1.000.000 (2)			10,000 ⁽²⁾	10,000 ⁽²⁾			26 ⁽²⁾			<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	<63.6
thyl ether	16,000 ⁽²⁾	410,000 ⁽²⁾	, ,	8,800 ⁽²⁾	8,800 ⁽²⁾	8,800 ⁽²⁾			6.1 ⁽²⁾			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Ethyl methacrylate												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	<6.36
Heptane												<17	<8.37	<127	<9.79	<9.14	<18.7	<20.5	<17.3	<0.643	<21.4	<17.2	<24	<18.6	<16.3	<25.5
													<2.09	<31.8	20			_0.0	<4.33	0.0				. 0.0	<4.08	<6.36

Page 7 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

1) Objectives are for Class I Groundwater.

2) Non-TACO or provisional ROs provided by the IEPA.

--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

											Sample Location:	P3-E-W	P3-E-W	P3-E.5-W	P3-E.5-W	P3-F-W	P3-F-W	P3-A1.5-W	P3-A1.5-W	P3-A2.5-W	P3-A2.5-W	P3-A2.5-W	P3-F.5-W	P3-F.5-W	P3-F.5-W	P3-
									Soil	Project	Sample ID:	P3-E-W (8)	P3-E-W (20)	P3-E.5-W (8)	P3-E.5-W (20)	P3-F-W (8)	P3-F-W (20)	P3-A1.5-W (8)	P3-A1.5-W (20)	()	P3-A2.5-W (8)		P3-F.5-W (3)	P3-F.5-W (8)	P3-F.5-W (20)	
		Soil Ingestion			Soil Inhalation			loor Air	Component	Remediation	Sample Date:	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	1/27/2010	2/3/2010	2/3/2010	2/3/2010	2/
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	8	20	8	20	8	20	3	8	20	3	8	20	
exachloroethane	78	2,000	2,000				160	160	0.5			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
domethane												<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	< 0.322	<10.7	<8.59	<12	<9.28	<8.16	
opropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			<4.25	<2.09	<31.8	0.59	<2.28	<4.66	<5.12	<4.33	0.438	<5.34	<4.3	<5.99	<4.64	<4.08	
ethacrylonitrile												<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	
ethyl Methacrylate												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
ethyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<1.7	< 0.837	<12.7	< 0.979	< 0.914	<1.87	<2.05	<1.73	< 0.0643	<2.14	<1.72	<2.4	<1.86	<1.63	
ethylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			<8.49	<4.18	<63.6	<4.9	<4.57	<9.33	<10.2	<8.66	< 0.322	<10.7	<8.59	<12	<9.28	<8.16	
ethylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	5.5	4.3	3.7	
aphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		245	60.8	4610	215	398	136	615	64.8	120	110	18.3	18.2	32.9	<8.16	
Butylbenzene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
Hexane				290 ⁽²⁾	290 ⁽²⁾	15 ⁽²⁾						<17	<8.37	<127	<9.79	<9.14	<18.7	<20.5	<17.3	2.95	<21.4	<17.2	<24	<18.6	<16.3	
itrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<84.9	<41.8	<636	<49	<45.7	<93.3	<102	<86.6	<3.22	<107	<85.9	<120	<92.8	<81.6	
Propylbenzene												<4.25	<2.09	12	0.73	1.0	<4.66	1.3	<4.33	1.21	<5.34	<4.3	<5.99	<4.64	<4.08	
ntachloroethane												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
sopropyltoluene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	< 0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
ropionitrile												<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	
ec-Butylbenzene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
tyrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		<4.25	<2.09	<31.8	1.5	<2.28	<4.66	4.8	<4.33	< 0.161	<5.34	1.9	<5.99	<4.64	<4.08	
ert-Butylbenzene												<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
etrahydrofuran												<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	
ans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
ans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<3.4	<1.67	<25.5	<1.96	<1.83	<3.73	<4.1	<3.46	< 0.129	<4.27	<3.44	<4.79	<3.71	<3.27	
ichloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	< 0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
ichlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 (2)	31	190	34 (2)			<4.25	<2.09	<31.8	<2.45	<2.28	<4.66	<5.12	<4.33	<0.161	<5.34	<4.3	<5.99	<4.64	<4.08	
nyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<42.5	<20.9	<318	<24.5	<22.8	<46.6	<51.2	<43.3	<1.61	<53.4	<43	<59.9	<46.4	<40.8	
vl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<1.7	< 0.837	<12.7	< 0.979	< 0.914	<1.87	<2.05	<1.73	< 0.0643	<2.14	<1.72	<2.4	<1.86	<1.63	

Page 8 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

		Soil Ingestion	1	_	Soil Inhalation	on	Indoo		Soil Component	Project Remediation	Sample Location: Sample ID: Sample Date:	P3-G-W P3-G-W (8) 2/4/2010	P3-G-W P3-G-W (20) 2/4/2010	P3-H-W P3-H-W (8) 2/5/2010	P3-H-W P3-H-W (20) 2/5/2010	P3-H.5-W P3-H.5-W (20) 2/5/2010	P4-A1-W P4-A1-W (3) 3/31/2010	P4-A1-W P4-A1-W (8) 3/31/2010	P4-A1-W P4-A1-W (20) 3/31/2010	P4-A2-W P4-A2-W (3) 3/29/2010	P4-A2-W P4-A2-W (8) 3/29/2010	P4-A2-W P4-A2-W (20) 3/31/2010	P4-A3-W P4-A3-W (3) 3/29/2010	P4-A3-W P4-A3-W (8) 3/29/2010	P4-A3-W P4-A3-W (20) 3/31/2010	P4-A4-W P4-A4-W (3) 3/26/2010
Constituent		l Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	8	20	20	3	8	20	3	8	20	3	8	20	3
Volatile Organic Compounds (mg/l		(0)	(7)	(7)	(0)	(0)			(0)																	
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 (2)	2,100 (2)	2,100 (2)			3.4 (2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,1,1-Trichloroethane	(2)	(2)	(2)	1,200	1,200	1,200	560	560	2			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,1,2-Trichloro-1,2,2-trifluoroethane	240	0.000	0.000	4 000	4 000	4 000			0.00			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	< 6.59	<6.32
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<1.19	<4.09 <40.9	<0.924	< 0.205	<3.88 <38.8	<6.5 <65	<4.84 <48.4	<42.1	<29	<23.3	<33.4 <334	<32.1 <321	<12.5	<6.59 <65.9	<6.32
1,1-Dichloro-2-propanone 1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<11.9 <1.19	<4.09	<9.24 <0.924	<2.05 <0.205	<3.88	<6.5	<4.84	<421 <42.1	<290 <29	<233 <23.3	<33.4	<32.1	<125 <12.5	<6.59	<63.2 <6.32
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,1-Dichloropropene												<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2,3-Trichlorobenzene												<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 (2)			0.0001 (2)			<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	<12.6
1,2,3-Trimethylbenzene												0.55	0.91	2.24	0.13	1.6	1.6	3.1	143	9.68	10.8	<33.4	16.6	4.14	<6.59	6.72
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 (2)	0.25 (2)			18 (2)			<1.19	<4.09	0.7	<0.205	1.2	3.4	7.23	139	22.8	26.3	<33.4	40.1	9.45	<6.59	11.5
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<1.19	<4.09	<0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 (2)	0.15 (2)			10 (2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	1.8	<42.1	5.91	6.86	<33.4	10.1	<12.5	<6.59	<6.32
1,3-Dichlorobenzene	(2)	(2)	(2)	(2)	(2)	(2)			(2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1,3-Dichloropropane	1,600 ⁽²⁾	41,000 (2)	41,000 ⁽²⁾	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
,4-Dichlorobenzene	(2)	(2)	(2)	11,000	17,000	340			2			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 ⁽²⁾	1,200 (2)	1,200 ⁽²⁾	1,200 (2)			3.1 ⁽²⁾			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
2,2-Dichloropropane	47 000 (2)	4 000 000 (2)	400,000 (2)	or ooo (2)	05 000 (2)	740 (2)			47 (2)			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
2-Butanone (methyl ethyl ketone)	47,000 ⁽²⁾ 1,600 ⁽²⁾	1,000,000 ⁽²⁾ 41,000 ⁽²⁾	120,000 ⁽²⁾ 41.000 ⁽²⁾	25,000 ⁽²⁾ 1,400 ⁽²⁾	25,000 ⁽²⁾ 1,400 ⁽²⁾	710 ⁽²⁾ 1,400 ⁽²⁾	23,000	23,000	17 ⁽²⁾ 4 ⁽²⁾			<11.9	<40.9	< 9.24	<2.05	<38.8	<65 +6.5	<48.4	<421	<290	<233	<334	<321	<125	<65.9	<63.2
2-Chlorotoluene (o-chlorotoluene)		41,000	41,000	1,400	1,400	1,400			4 . ,			<1.19 <11.9	<4.09 <40.9	<0.924 <9.24	<0.205 <2.05	<3.88 <38.8	<6.5 <65	<4.84 <48.4	<42.1 <421	<29 <290	<23.3 <233	<33.4 <334	<32.1 <321	<12.5 <125	<6.59 <65.9	<6.32 <63.2
2-Hexanone												<11.9	<40.9 <40.9	<9.24 <9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233 <233	<334	<321	<125	<65.9	<63.2
2-Nitropropane 4-Chlorotoluene												<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
1-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 ⁽²⁾	340 ⁽²⁾						<11.19	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<32.1	<12.5	<65.9	<63.2
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<11.9	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	<63.2
Acrolein	39 ⁽²⁾	1.000 (2)	1.600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<23.7	<81.7	<18.5	<4.1	<77.7	<130	<96.9	<842	<579	<467	<668	<642	<249	<132	<126
Acrylonitrile	1.2 ⁽²⁾	11 ⁽²⁾	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<842	<57.9	<46.7	<668	<64.2	<24.9	<132	<12.6
Allyl chloride												<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<84.2	<29	<23.3	<66.8	<32.1	<12.5	<13.2	<6.32
Bromobenzene	1,600 (2)	41,000 (2)	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Bromochloromethane												<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	<12.6
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<1.19	<4.09	<0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Chloroethane												<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	<12.6
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Chloromethane (methyl chloride)												4.09	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	<12.6
is-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
is-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<0.949	<3.27	<0.739	<0.164	<3.11	<5.2	<3.88	<42.1	<23.2	<18.7	<33.4	<25.7	<9.97	<6.59	<5.06
Cyclohexanone	,	1,000,000 (2)			660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<23.7	<81.7	<18.5	<4.1	<77.7	<130	<96.9	<842	<579	<467	<668	<642	<249	<132	<126
Dibromochloromethane (chlorodibrom	(0)	41,000	41,000	1,300	1,300	1,300	630	630	0.4			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Dibromomethane (methylene bromide		20,000 (2)	20,000 (2)	2,700 (2)	2,700 ⁽²⁾	2,700 (2)		4.0	0.34 (2)			<1.19	<4.09	< 0.924	< 0.205	<3.88	< 6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Dichlorodifluoromethane	16,000 ⁽²⁾	,	180,000 ⁽²⁾ 1.000.000 ⁽²⁾		310 ⁽²⁾	20 (2)	6.8	4.2	43 ⁽²⁾			<2.37	<8.17	<1.85	< 0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	<12.6
thyl acetate	70,000 ⁽²⁾	, ,	, ,	.,	10,000 ⁽²⁾ 8,800 ⁽²⁾	10,000 (2)			26 ⁽²⁾ 6.1 ⁽²⁾			<11.9	<40.9	<9.24	< 2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	<63.2
Ethyl ether	16,000 (2)		410,000 (2)	8,800 (2)	0,000 ` '	8,800 (2)						<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29 <20	<23.3	<33.4	<32.1	<12.5	<6.59	<6.32
Ethyl methacrylate												<1.19	<4.09 <16.3	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1 <168	<29 <116	<23.3	<33.4 <134	<32.1 <128	<12.5	<6.59	<6.32
Heptane Hexachlorobutadiene												<4.75 <1.19	<16.3 <4.09	<3.7 <0.924	<0.819 <0.205	<15.5 <3.88	<26 <6.5	<19.4 <4.84	<168 <42.1	<116 <29	<93.4 <23.3	<134 <33.4	<128 <32.1	<49.9 <12.5	<26.4 <6.59	<25.3 <6.32
CARUITO ODULAUICI IC												\1.19	\4.U3	\U.924	\U.ZU 3	\J.00	\0.0	\4.04	~4 Z.1	~23	~23.3	\ 00.4	\JZ. I	>1∠. 0	\U.D¥	<u> </u>

Page 9 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

1) Objectives are for Class I Groundwater.

2) Non-TACO or provisional ROs provided by the IEPA.

--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

											Sample Location:	P3-G-W	P3-G-W	P3-H-W	P3-H-W	P3-H.5-W	P4-A1-W	P4-A1-W	P4-A1-W	P4-A2-W	P4-A2-W	P4-A2-W	P4-A3-W	P4-A3-W	P4-A3-W	P4-A
									Soil	Project	Sample ID:	P3-G-W (8)	P3-G-W (20)	P3-H-W (8)	P3-H-W (20)	P3-H.5-W (20)	٠,	P4-A1-W (8)	P4-A1-W (20)	P4-A2-W (3)	P4-A2-W (8)	P4-A2-W (20)	P4-A3-W (3)	P4-A3-W (8)	P4-A3-W (20)	,
		Soil Ingestion			Soil Inhalation			door Air	Component	Remediation	Sample Date:	2/4/2010	2/4/2010	2/5/2010	2/5/2010	2/5/2010	3/31/2010	3/31/2010	3/31/2010	3/29/2010	3/29/2010	3/31/2010	3/29/2010	3/29/2010	3/31/2010	3/2
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	8	20	20	3	8	20	3	8	20	3	8	20	
exachloroethane	78	2,000	2,000				160	160	0.5			<1.19	<4.09	<0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
domethane												<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	
opropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			<1.19	<4.09	2.09	< 0.205	<3.88	<6.5	1.6	12	<29	5.46	<33.4	8.16	<12.5	<6.59	
ethacrylonitrile												<11.9	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	
ethyl Methacrylate												<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
ethyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.475	<1.63	< 0.37	< 0.0819	<1.55	<2.6	<1.94	<16.8	<11.6	<9.34	<13.4	<12.8	<4.99	<2.64	
ethylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			<2.37	<8.17	<1.85	<0.41	<7.77	<13	<9.69	<84.2	<57.9	<46.7	<66.8	<64.2	<24.9	<13.2	
ethylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	16.6	13	<33.4	16.1	6.86	<6.59	
aphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		38.4	53.6	4.42	5.6	86.8	162	200	17000	610	660	369	903	252	12	
-Butylbenzene												<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	5.06	<42.1	15.9	16.8	<33.4	25.6	<12.5	<6.59	
Hexane				290 ⁽²⁾	290 ⁽²⁾	15 ⁽²⁾						<4.75	<16.3	0.5	< 0.819	<15.5	<26	<19.4	<168	<116	<93.4	<134	<128	<49.9	<26.4	
trobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<23.7	<81.7	<18.5	<4.1	<77.7	<130	<96.9	<842	<579	<467	<668	<642	<249	<132	
Propylbenzene												<1.19	<4.09	1.0	< 0.205	<3.88	<6.5	<4.84	24	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
entachloroethane												<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
Isopropyltoluene												<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
ropionitrile												<11.9	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	
ec-Butylbenzene												<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
tyrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		<1.19	4.45	< 0.924	0.771	<3.88	<6.5	<4.84	1150	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
ert-Butylbenzene												<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
etrahydrofuran												<11.9	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	
ans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	•
ans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			< 0.949	<3.27	< 0.739	< 0.164	<3.11	<5.2	<3.88	<42.1	<23.2	<18.7	<33.4	<25.7	<9.97	<6.59	
richloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<1.19	<4.09	< 0.924	<0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
richlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 ⁽²⁾	31	190	34 ⁽²⁾			<1.19	<4.09	< 0.924	< 0.205	<3.88	<6.5	<4.84	<42.1	<29	<23.3	<33.4	<32.1	<12.5	<6.59	
nyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<11.9	<40.9	<9.24	<2.05	<38.8	<65	<48.4	<421	<290	<233	<334	<321	<125	<65.9	
nvl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			< 0.475	<1.63	< 0.37	< 0.0819	<1.55	<2.6	<1.94	<16.8	<11.6	<9.34	<13.4	<12.8	<4.99	<2.64	

Page 10 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Constituent	Residential	Soil Ingestion Commercial	Construction	n Residential	Soil Inhalatio			or Air Commercial	Soil Component to Groundwater ⁽¹⁾	Project Remediation Objectives	Sample Location: Sample ID: Sample Date: Sample Depth (feet):	P4-A4-W P4-A4-W (8) 3/26/2010 8	P4-A4-W P4-A4-W (20) 3/26/2010 20	P4-A5-W P4-A5-W (3) 3/26/2010 3	P4-A5-W P4-A5-W (8) 3/26/2010 8	P4-A5-W P4-A5-W (20) 3/31/2010 20	P5-A3-W P5-A3-W (3) 7/14/2010 3	P5-A3-W P5-A3-W (8) 7/14/2010 8	P5-A3-W P5-A3-W(20) 7/15/2010 20	P5-A4-W P5-A4-W(3) 7/14/2010 3	P5-A4-W P5-A4-W(8) 7/14/2010 8	P5-A4-W P5-A4-W(20) 7/15/2010 20	P5-A5-W P5-A5-W(20) 7/15/2010 20	P5-B5-W P5-B5-W (3) 7/13/2010 3	P5-B5-W P5-B5-W (8) 7/13/2010 8	P5-B5-W P5-B5-W (20) 7/13/2010 20
Volatile Organic Compounds (mg/kg										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	F		-	-		-	-	-	-		-	-	-	-		
1,1,1,2-Tetrachloroethane	2,300 ⁽²⁾	61,000 ⁽²⁾	6,100 ⁽²⁾	2.100 (2)	2.100 (2)	2,100 (2)			3.4 (2)			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1,1-Trichloroethane				1,200	1,200	1,200	560	560	2			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1,2,2-Tetrachloroethane	4.700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1,2-Trichloro-1,2,2-trifluoroethane												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1-Dichloro-2-propanone												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	<1.75
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	< 0.175
1,1-Dichloropropene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	< 0.175
1,2,3-Trichlorobenzene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	< 0.175
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 (2)			0.0001 (2)			<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	< 0.804	< 0.347	< 0.349
1,2,3-Trimethylbenzene												2.79	<7.22	5.49	3.3	<7.91	15.2	3.5	0.57	4	1.3	<24.6	< 0.531	0.3	0.546	0.635
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	< 0.175
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 (2)	0.25 (2)			18 ⁽²⁾			6.61	<7.22	13.5	8.18	<7.91	8.85	2	0.38	2.4	<4.73	<24.6	0.28	0.09	0.338	0.279
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	<0.173	<0.175
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	<0.173	<0.175
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	< 0.173	<0.175
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	< 0.173	< 0.175
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 (2)			10 ⁽²⁾			1.75	<7.22	3.31	2.15	<7.91	6.3	1.2	<0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	0.13	< 0.175
1,3-Dichlorobenzene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	< 0.173	<0.175
1,3-Dichloropropane	1,600 ⁽²⁾	41,000 (2)	41,000 ⁽²⁾	1,000 ⁽²⁾	1,000 ⁽²⁾	1,000 ⁽²⁾			0.83 (2)			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1,4-Dichlorobenzene	(2)			11,000	17,000	340			2			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 (2)	1,200 (2)	1,200 ⁽²⁾	1,200 (2)			3.1 ⁽²⁾			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
2,2-Dichloropropane	(2)	(2)	(2)	(2)	(2)	(2)						<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
2-Butanone (methyl ethyl ketone)	47,000 ⁽²⁾	1,000,000 (2)	120,000 (2)	25,000 (2)	25,000 (2)	710 (2)	23,000	23,000	17 ⁽²⁾			<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	0.36
2-Chlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41,000 ⁽²⁾	1,400 ⁽²⁾	1,400 (2)	1,400 (2)			4 (-)			<6.47	<7.22	<10.8	<6.52	<7.91	<63.1	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
2-Hexanone												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	<1.75
2-Nitropropane												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	<1.75
4-Chlorotoluene				2 400 (2)	3,100 ⁽²⁾	240 (2)						<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
4-Methyl-2-pentanone (MIBK)	70.000			3,100 (2)		340 ⁽²⁾	400,000	400.000		7 000		<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	<1.75
Accetone	70,000 39 ⁽²⁾	1.000 (2)	1,600 (2)	100,000 0.16 ⁽²⁾	100,000 0.26 ⁽²⁾	100,000 0.017 ⁽²⁾	100,000	100,000	25	7,800		<64.7	<72.2	<108 <215	<65.2	<79.1	<63.1 <126	<52.6 <105	<6.63 <13.3	<52.6 <105	<47.3	<246	<5.31 <10.6	<4.02	<1.73	<1.75
Acrolein	1.2 ⁽²⁾	1,000 T	230 (2)	0.16 (2)	0.26 ⁽²⁾	(2)			0.014 (2)			<129	<144		<130	<158					<94.5	<492		<8.04	<3.47	< 3.49
Acrylonitrile	1.2	11.77	230 17	0.20	0.54	0.17 (2)			0.0006 (2)			<12.9 <6.47	<144 <14.4	<21.5	<13	<158	<12.6	<10.5	<1.33	<10.5	< 9.45	<49.2	<1.06	<0.804	<0.347	< 0.349
Allyl chloride	1,600 (2)	41 000 (2)	41,000 (2)	100 (2)	160 (2)	11 ⁽²⁾			2.2 (2)			<6.47		<10.8	<6.52	<15.8	<6.31	<5.26	< 0.663	<5.26	<4.73 <4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Bromobenzene Bromoshlaramethana	1,000	41,000	41,000	100 * 7	100 **	111.7			2.2			<6.47	<7.22 <7.22	<10.8 <10.8	<6.52 <6.52	<7.91 <7.91	<6.31 <6.31	<5.26 <5.26	<0.663 <0.663	<5.26 <5.26	<4.73 <4.73	<24.6 <24.6	<0.531 <0.531	<0.402 <0.402	<0.173 <0.173	<0.175 <0.175
Bromochloromethane Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Bromodichloromethane Bromoform	1U 81	720	16,000	53	100	140	1,400 //0	360	0.8			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26 <5.26	<4.73 <4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.8			<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	<0.402	<0.173	<0.175
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Chlorobenzene	1,600	41,000	4.100	130	210	1.3	54	330	1			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Chloroethane												<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	< 0.804	<0.347	< 0.349
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Chloromethane (methyl chloride)			_,500									<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	< 0.804	<0.347	< 0.349
cis-1,2-Dichloroethene	780	20.000	20.000	1.200	1,200	1.200	700	700	0.4			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<5.18	<7.22	<8.61	<5.22	<7.91	<5.05	<4.21	< 0.53	<4.21	<3.78	<19.7	0.425	<0.322	<0.139	<0.14
Cyclohexanone		1,000,000 (2)			660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<129	<144	<215	<130	<158	<126	<105	<13.3	<105	<94.5	<492	<10.6	<8.04	<3.47	<3.49
Dibromochloromethane (chlorodibromo		41,000	41,000	1,300	1,300	1,300	630	630	0.4			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Dibromomethane (methylene bromide)	. (2)	20,000 (2)	20,000 (2)	2,700 ⁽²⁾	2,700 (2)	2,700 (2)			0.34 (2)			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 (2)	180,000 ⁽²⁾		310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	<0.804	<0.347	<0.349
Ethyl acetate	70,000 (2)	1,000,000 (2)			10,000 (2)	10,000 (2)			26 (2)			<64.7	<72.2	<108	<65.2	<79.1	<63.1	52.6	<6.63	<52.6	47.3	<246	<5.31	<4.02	1.0	<1.75
Ethyl ether	16,000 ⁽²⁾		410,000 (2)		8,800 (2)	8,800 (2)			6.1 ⁽²⁾			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	< 0.402	< 0.173	< 0.175
Ethyl methacrylate												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Heptane												<25.9	<28.9	<43	<26.1	<31.6	<25.2	<21	<2.65	<21.1	<18.9	<98.3	<2.13	<1.61	0.28	< 0.699
Hexachlorobutadiene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<0.175
Notes:																					•				•	

Page 11 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

1) Objectives are for Class I Groundwater.

2) Non-TACO or provisional ROs provided by the IEPA.

--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

									Soil	Project	Sample Location: Sample ID:	P4-A4-W P4-A4-W (8)	P4-A4-W P4-A4-W (20)	P4-A5-W P4-A5-W (3)	P4-A5-W P4-A5-W (8)	P4-A5-W P4-A5-W (20)	P5-A3-W P5-A3-W (3)	P5-A3-W P5-A3-W (8)	P5-A3-W P5-A3-W(20)	P5-A4-W P5-A4-W(3)	P5-A4-W P5-A4-W(8)	P5-A4-W P5-A4-W(20)	P5-A5-W P5-A5-W(20)	P5-B5-W P5-B5-W (3)	P5-B5-W P5-B5-W (8)	P5-E P5-B5-
		Soil Ingestion			Soil Inhalation	n	Ind	oor Air	Component	Remediation	Sample Date:	3/26/2010	3/26/2010	3/26/2010	3/26/2010	3/31/2010	7/14/2010	7/14/2010	7/15/2010	7/14/2010	7/14/2010	7/15/2010	7/15/2010	7/13/2010	7/13/2010	7/13
Constituent	Residential			Residential	Commercial		Residentail		to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	3	8	20	3	8	20	3	8	20	20	3	8	
exachloroethane	78	2,000	2,000				160	160	0.5			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	<(
odomethane												<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	<0.804	< 0.347	<
opropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 (2)	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 (2)			1.33	<7.22	2.97	1.59	<7.91	6.41	<1.2	< 0.663	<5.26	<4.73	<24.6	< 0.531	0.29	0.13	
ethacrylonitrile												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	
thyl Methacrylate												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	
thyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<2.59	<2.89	<4.3	<2.61	<3.16	<2.52	<2.1	< 0.265	<2.11	<1.89	<9.83	<0.213	<0.161	< 0.0693	
thylacrylate	2.300 (2)	61.000 ⁽²⁾	6.100 (2)	6.500 ⁽²⁾	6,500 ⁽²⁾	6.500 ⁽²⁾			0.89 (2)			<12.9	<14.4	<21.5	<13	<15.8	<12.6	<10.5	<1.33	<10.5	<9.45	<49.2	<1.06	< 0.804	< 0.347	
thylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		1.71	<7.22	2.65	1.98	<7.91	<6.31	<5.26	0.48	<5.26	<4.73	17	0.13	< 0.402	< 0.173	
ohthalene	1,600	41,000	4.100	170	270	1.8	34	34	12	1.8		176	52.9	263	207	7.5	652	148	32.7	98.2	72.4	243	25.9	3.71	4.25	
utylbenzene												<6.47	<7.22	8.58	4.85	<7.91	<6.31	<5.26	0.26	<5.26	<4.73	<24.6	<0.531	< 0.402	0.16	
exane				290 (2)	290 (2)	15 ⁽²⁾						<25.9	<28.9	<43	<26.1	<31.6	<25.2	<21	<2.65	<21.1	<18.9	<98.3	<2.13	<1.61	0.23	
obenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<129	<144	<215	<130	<158	<126	<105	<13.3	<105	<94.5	<492	<10.6	<8.04	<3.47	
ropylbenzene												<6.47	<7.22	<10.8	<6.52	<7.91	2.6	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	0.09	0.16	
tachloroethane												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
opropyltoluene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
ppionitrile												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	
c-Butvlbenzene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	< 0.531	< 0.402	< 0.173	
rrene	16.000	410.000	41.000	1.500	1.500	430	230	230	4	230		<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	0.761	<5.26	<4.73	<24.6	1.93	< 0.402	< 0.173	
t-Butvlbenzene												<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
trachloroethene	12	110	2.400	11	20	28	0.24	1.7	0.06			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
rahydrofuran												<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	
ns-1.2-Dichloroethene	1,600	41.000	41.000	3.100	3.100	3.100			0.7			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	< 0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
ns-1.3-Dichloropropene	6.4	57	1.200	1.1	2.1	0.39			0.004			<5.18	<7.22	<8.61	<5.22	<7.91	<5.05	2.8	<0.53	<4.21	<3.78	<19.7	<0.425	<0.322	<0.139	
chloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
chlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 (2)	850 ⁽²⁾	1,400 ⁽²⁾	88 ⁽²⁾	31	190	34 ⁽²⁾			<6.47	<7.22	<10.8	<6.52	<7.91	<6.31	<5.26	<0.663	<5.26	<4.73	<24.6	<0.531	<0.402	<0.173	
nyl acetate	78.000	1.000.000	200.000	1,000	1.600	10	270	1,600	170 ⁽²⁾			<64.7	<72.2	<108	<65.2	<79.1	<63.1	<52.6	<6.63	<52.6	<47.3	<246	<5.31	<4.02	<1.73	
/I chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<2.59	<2.89	<4.3	<2.61	<3.16	<2.52	<2.1	<0.265	<2.11	<1.89	<9.83	<0.213	<0.161	<0.0693	

Page 12 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

									Soil	Project	Sample Location: Sample ID:	P5-C5-W P5-C5-W (8)	P5-C5-W P5-C5-W (20)	P6-A4.5-W P6-A4.5-W (3)	P6-A4.5-W P6-A4.5-W (8)	P6-A5.5-W P6-A5.5-W (8)	P6-A5.5-W P6-A5.5-W (21)	P6-B5.5-W P6-B5.5-W (20)	P6-C5.5-W P6-C5.5-W (20)		P6-CD5.5-W P6-CD5.5-W (8	P6-CD5.5-W) P6-CD5.5-W (20	P6-D5.5-W) P6-D5.5-W (8)	P6-D5.5-W P6-D5.5-W (20)	P7-B1-SW P7-B1-SW (3)	P7-BC1-SW P7-BC1-SW (3)
Constituent	D	Soil Ingestion	0 ' "	D	Soil Inhalatio			or Air	Component	Remediation	Sample Date:	7/13/2010	7/13/2010	10/12/2010	10/12/2010	10/12/2010	10/14/2010	10/14/2010	10/18/2010	10/18/2010	10/19/2010	10/19/2010	10/19/2010	10/20/2010	2/15/2011	2/15/2011
Constituent		I Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater 7	Objectives	Sample Depth (feet):	8	20	3	8	8	21	20	20	3	8	20	8	20	3	3
Volatile Organic Compounds (mg/kg	2,300 ⁽²⁾	61.000 ⁽²⁾	6,100 ⁽²⁾	2.100 ⁽²⁾	2.100 (2)	2.100 (2)			3.4 (2)			-0.200	-4.50	-0.10	-0.040	-0.0542	-2.00	-2.00	-0.110	-4.70	-0.45	-0.407	-4.4	-4.0	4E CO	-0.442
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	2,300	01,000	0,100	1,200	1,200	1,200	560	560	3.4			<0.329 <0.329	<4.56 <4.56	<0.12 <0.12	<0.616 <0.616	<0.0513 <0.0513	<3.08 <3.08	<3.88 <3.88	<0.148 <0.148	<4.78 <4.78	<3.45 <3.45	<0.427 <0.427	<4.1 <4.1	<4.9 <4.9	<5.62 <5.62	<0.113 <0.113
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,1,2-Trichloro-1,2,2-trifluoroethane												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			< 0.329	<4.56	<0.12	< 0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
1,1-Dichloro-2-propanone												<3.29	<45.6	<1.2	<6.16	<0.513	30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<1.13
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<0.329	<4.56	<0.12	<0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	< 3.45	<0.427	<4.1	<4.9	< 5.62	<0.113
1,1-Dichloropropene 1,2,3-Trichlorobenzene												<0.329 <0.329	<4.56 <4.56	<0.12 <0.12	<0.616 <0.616	<0.0513 <0.0513	<3.08 <3.08	<3.88 <3.88	<0.148 <0.148	<4.78 <4.78	<3.45 <3.45	<0.427 <0.427	<4.1 <4.1	<4.9 <4.9	<5.62 <5.62	<0.113 <0.113
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 ⁽²⁾			0.0001 (2)			< 0.657	<9.11	<0.12	<1.23	<0.103	<6.15	<7.76	<0.146	<9.57	<6.91	<0.854	<8.2	<9.8	<11.2	<0.113
1,2,3-Trimethylbenzene												1.43	<4.56	0.345	2.84	0.9	1.1	1.2	<0.148	<4.78	1.2	0.24	<4.1	1.0	16.5	0.352
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 (2)	0.25 (2)			18 (2)			0.16	<4.56	0.171	1.15	0.729	0.73	<3.88	<0.148	<4.78	<3.45	0.17	<4.1	<4.9	9.05	<0.113
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			< 0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	< 5.62	<0.113
1,2-Dichloroethane	/	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<0.329	<4.56	<0.12	<0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	< 3.45	<0.427	<4.1	<4.9	< 5.62	<0.113
1,2-Dichloropropane 1,3,5-Trimethylbenzene	3,900 ⁽²⁾	100,000 ⁽²⁾	1,800 100.000 ⁽²⁾	15 45 ⁽²⁾	23 72 ⁽²⁾	0.5 0.15 ⁽²⁾	0.023	0.17	0.03 10 ⁽²⁾			<0.329 <0.329	<4.56 <4.56	<0.12 0.11	<0.616 0.4	<0.0513 <0.0513	<3.08 <3.08	<3.88 <3.88	<0.148 <0.148	<4.78 <4.78	<3.45 <3.45	<0.427 <0.427	<4.1 <4.1	<4.9 <4.9	<5.62 3.2	<0.113 0.165
1,3-Dichlorobenzene	5,500											<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 (2)	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
1,4-Dichlorobenzene				11,000	17,000	340			2			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
1-Chlorobutane	3,100 (2)	82,000 ⁽²⁾	14,000 (2)	1,200 (2)	1,200 (2)	1,200 (2)			3.1 (2)			< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
2,2-Dichloropropane												< 0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
2-Butanone (methyl ethyl ketone)	47,000 (2)	1,000,000 (2)	120,000 (2)	25,000 (2)	25,000 (2)	710 (2)	23,000	23,000	17 (2)			<3.29	<45.6	<1.2	<6.16	<0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<1.13
2-Chlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4 (2)			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	< 5.62	<0.113
2-Hexanone												<3.29	<45.6	<1.2	<6.16	<0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41 <41	<49 <49	<56.2	<1.13
2-Nitropropane 4-Chlorotoluene												<3.29 <0.329	<45.6 <4.56	<1.2 <0.12	<6.16 <0.616	<0.513 <0.0513	<30.8 <3.08	<38.8 <3.88	<1.48 <0.148	<47.8 <4.78	<34.5 <3.45	<4.27 <0.427	<4.1	<4.9 <4.9	<56.2 <5.62	<1.13 <0.113
4-Methyl-2-pentanone (MIBK)				3.100 ⁽²⁾	3.100 ⁽²⁾	340 ⁽²⁾						<3.29	<45.6	<1.2	<6.16	<0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<1.13
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<3.29	<45.6	<1.2	<6.16	<0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<1.13
Acrolein	39 ⁽²⁾	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<6.57	<91.1	<2.4	<12.3	<1.03	<61.5	<77.6	<2.95	<95.7	<69.1	<8.54	<82	<98	<112	<2.27
Acrylonitrile	1.2 (2)	11 (2)	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			< 0.657	<9.11	<0.24	<1.23	<0.103	<6.15	<7.76	<0.295	<9.57	<6.91	< 0.854	<8.2	<9.8	<11.2	<0.227
Allyl chloride												< 0.329	<4.56	<0.12	< 0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
Bromobenzene	1,600 (2)	41,000 (2)	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Bromochloromethane								4.400	0.0			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	< 3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
Bromoform Bromomethane (methyl bromide)	110	720 2,900	16,000 1,000	53 10	100 15	140 3.9	49 0.71	360 4.3	0.8 0.2			<0.329 <0.657	<4.56 <9.11	<0.12 <0.24	<0.616 <1.23	<0.0513 <0.103	<3.08 <6.15	<3.88 <7.76	<0.148 <0.295	<4.78 <9.57	<3.45 <6.91	<0.427 <0.854	<4.1 <8.2	<4.9 <9.8	<5.62 <11.2	<0.113 <0.227
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<0.329	<4.56	<0.12	<0.616	<0.103	<3.08	<3.88	<0.293	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.227
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Chloroethane												< 0.657	<9.11	<0.24	<1.23	<0.103	<6.15	<7.76	<0.295	<9.57	<6.91	< 0.854	<8.2	<9.8	<11.2	<0.227
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			< 0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Chloromethane (methyl chloride)												< 0.657	<9.11	<0.24	<1.23	<0.103	<6.15	<7.76	<0.295	<9.57	<6.91	<0.854	<8.2	<9.8	<11.2	<0.227
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
cis-1,3-Dichloropropene	6.4 390,000 ⁽²⁾	57 1,000,000 ⁽²⁾	1,200	1.1 660 ⁽²⁾	2.1 660 ⁽²⁾	0.39 660 ⁽²⁾	0.061	0.45	0.004 150 ⁽²⁾			< 0.263	<3.64	<0.096	<0.492	<0.041	<2.46	<3.1	<0.118	<3.83	<2.76	< 0.342	<3.28	<3.92	<4.49	<0.0908
Cyclohexanone Dibromochloromethane (chlorodibromo	,	41,000	41,000	1,300	1,300	1,300	630	630	0.4			<6.57 <0.329	<91.1 <4.56	<2.4 <0.12	<12.3 <0.616	<1.03 <0.0513	<61.5 <3.08	<77.6 <3.88	<2.95 <0.148	<95.7 <4.78	<69.1 <3.45	<8.54 <0.427	<82 <4.1	<98 <4.9	<112 <5.62	<2.27 <0.113
Dibromomethane (methylene bromide)	(2)	20,000 (2)	20,000 ⁽²⁾	2,700 ⁽²⁾	2,700 ⁽²⁾	2,700 ⁽²⁾			0.44			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9 <4.9	<5.62 <5.62	<0.113
Dichlorodifluoromethane	16,000 ⁽²⁾			190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 ⁽²⁾			<0.657	<9.11	<0.12	<1.23	<0.0313	<6.15	<7.76	<0.146	<9.57	<6.91	<0.854	<8.2	<9.8	<11.2	<0.113
Ethyl acetate	70,000 ⁽²⁾	1,000,000 (2)			10,000 ⁽²⁾	10,000 ⁽²⁾			26 ⁽²⁾			<3.29	<45.6	0.44	<6.16	0.19	<30.8	<38.8	0.63	<47.8	<34.5	<4.27	<41	<49	<56.2	<1.13
Ethyl ether	16,000 (2)	410,000 (2)	410,000 (2)		8,800 (2)	8,800 (2)			6.1 ⁽²⁾			< 0.329	<4.56	<0.12	<0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0.113
Ethyl methacrylate												< 0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Heptane												<1.31	<18.2	<0.48	<2.46	<0.205	<12.3	<15.5	<0.59	<19.1	<13.8	<1.71	<16.4	<19.6	<22.5	<0.454
Hexachlorobutadiene												<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.113
Notes:									-		-															

Page 13 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

(1) Objectives are for Class I Groundwater.

(2) Non-TACO or provisional ROs provided by the IEPA.

'-- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

TABLE 5-2 Soil Confirmation Sample Analytical Results For Excavation Wall - VOCs
Champaign Former MGP Ameren Illinois

			·				·				Sample Location:	P5-C5-W	P5-C5-W	P6-A4.5-W	P6-A4.5-W	P6-A5.5-W	P6-A5.5-W	P6-B5.5-W	P6-C5.5-W	P6-CD5.5-W	P6-CD5.5-W	P6-CD5.5-W	P6-D5.5-W	P6-D5.5-W	P7-B1-SW	P7-BC1
									Soil	Project	Sample ID:	P5-C5-W (8)	P5-C5-W (20)	P6-A4.5-W (3)	P6-A4.5-W (8)	P6-A5.5-W (8)		P6-B5.5-W (20)	P6-C5.5-W (20)	P6-CD5.5-W (3)	P6-CD5.5-W (8)	P6-CD5.5-W (20)	P6-D5.5-W (8)	P6-D5.5-W (20)	P7-B1-SW (3)	,
		Soil Ingestion			Soil Inhalation			oor Air	Component	Remediation	Sample Date:	7/13/2010	7/13/2010	10/12/2010	10/12/2010	10/12/2010	10/14/2010	10/14/2010	10/18/2010	10/18/2010	10/19/2010	10/19/2010	10/19/2010	10/20/2010	2/15/2011	2/15/
Constituent	Residential	Commercial	Construction	Residential	Commercial C	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	20	3	8	8	21	20	20	3	8	20	8	20	3	-
xachloroethane	78	2,000	2,000				160	160	0.5			<0.329	<4.56	<0.12	<0.616	<0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	<5.62	<0.
omethane												< 0.657	<9.11	< 0.24	<1.23	< 0.103	<6.15	<7.76	<0.295	<9.57	<6.91	< 0.854	<8.2	<9.8	<11.2	<0.
propylbenzene (cumene)	7,800 ⁽²⁾	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			0.483	<4.56	0.11	0.4	0.0791	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	3.3	0.
thacrylonitrile												<3.29	<45.6	<1.2	<6.16	< 0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<
thyl Methacrylate												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<(
thyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.131	<1.82	<0.048	<0.246	< 0.0205	<1.23	<1.55	< 0.059	<1.91	<1.38	<0.171	<1.64	<1.96	<2.25	<0.
thylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 (2)	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			< 0.657	<9.11	< 0.24	<1.23	< 0.103	<6.15	<7.76	<0.295	<9.57	<6.91	< 0.854	<8.2	<9.8	<11.2	<(
thylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	0.049	<4.78	0.84	0.13	<4.1	<4.9	<5.62	<(
ohthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		3.38	12.5	2.39	139	65.1	45.6	71.9	<0.295	49.5	51	13.7	29.6	78.6	200	0
Butylbenzene												0.511	<4.56	<0.12	0.45	0.149	<3.08	<3.88	<0.148	<4.78	<3.45	<0.427	<4.1	<4.9	12.5	0
Hexane				290 ⁽²⁾	290 ⁽²⁾	15 ⁽²⁾						<1.31	<18.2	<0.48	<2.46	< 0.205	<12.3	<15.5	< 0.59	<19.1	<13.8	<1.71	<16.4	<19.6	<22.5	<
robenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<6.57	<91.1	<2.4	<12.3	<1.03	<61.5	<77.6	<2.95	<95.7	<69.1	<8.54	<82	<98	<112	<
Propylbenzene												0.516	<4.56	0.068	0.48	0.258	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	2.8	0
ntachloroethane												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<
sopropyltoluene												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<(
ppionitrile												<3.29	<45.6	<1.2	<6.16	< 0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<
c-Butylbenzene												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	0.
/rene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		< 0.329	12.4	<0.12	< 0.616	< 0.0513	5.92	5.19	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0
rt-Butylbenzene												< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0
trachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0
trahydrofuran												<3.29	<45.6	<1.2	<6.16	< 0.513	<30.8	<3.88	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<
ns-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0
ns-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			< 0.263	<3.64	< 0.096	< 0.492	< 0.041	<2.46	<3.1	<0.118	<3.83	<2.76	< 0.342	<3.28	<3.92	<4.49	<0
chloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<(
ichlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 (2)	31	190	34 (2)			< 0.329	<4.56	<0.12	< 0.616	< 0.0513	<3.08	<3.88	<0.148	<4.78	<3.45	< 0.427	<4.1	<4.9	<5.62	<0
yl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<3.29	<45.6	<1.2	<6.16	< 0.513	<30.8	<38.8	<1.48	<47.8	<34.5	<4.27	<41	<49	<56.2	<
vl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			< 0.131	<1.82	<0.048	< 0.246	< 0.0205	<1.23	<1.55	< 0.059	<1.91	<1.38	<0.171	<1.64	<1.96	<2.25	<0

Page 14 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

TABLE 5-2 Soil Confirmation Sample Analytical Results For Excavation Wall - VOCs Champaign Former MGP Ameren Illinois

									0 "	5	Sample Location:	P7-BC1-SW	P7-C1-SW	P7-C1-SW	P7-CD1-SW	P7-CD1-SW	P7-D1-W	P7-DE1-W	P7-DE1-W	P8-H1-W	P8-H4-W	P9-D1-W	P9-H1-W	P9-H2-W
		Soil Ingestion			Soil Inhalatio	ın	Indo	or Air	Soil Component	Project Remediation	Sample ID: Sample Date:	P7-BC1-SW (8) 2/15/2011	P7-C1-SW (3) 2/15/2011	P7-C1-SW (21) 2/15/2011	P7-CD1-SW (3) 2/17/2011	P7-CD1-SW (8) 2/17/2011	P7-D1-W (8) 3/2/2011	P7-DE1-W (3) 3/2/2011	P7-DE1-W (8) 3/2/2011	P8-H1-W (3) 4/6/2011	P8-H4-W (3) 4/6/2011	P9-D1-W (8) 6/7/2011	P9-H1-W (15) 5/25/2011	P9-H2-W (8) 5/18/2011
Constituent	Residential	•		Residential			Residentail		to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	3	21	3	8	8	3	8	3	3	8	15	8
Volatile Organic Compounds (mg/k	g)									•	. , ,													•
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 (2)	2,100 (2)	2,100 (2)			3.4 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,1,1-Trichloroethane				1,200	1,200	1,200	560	560	2			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	< 0.22
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
1,1,2-Trichloro-1,2,2-trifluoroethane												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,1-Dichloro-2-propanone												<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	<0.996	<2.2
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,1-Dichloropropene												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,2,3-Trichlorobenzene	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 (2)			0.0001 (2)			<4.5	<4.43	< 3.86	<3.87	<4.65	< 3.79	<0.121	<0.377	<0.148	< 0.13	<8.71	<0.0996	<0.22
1,2,3-Trichloropropane	0.092	0.02	10	730	730	730 . 7			0.0001			<9 2.5	<8.86 15.2	<7.73 <3.86	<7.74 8.18	<9.29 7.6	<7.58 25.5	<0.243 1.86	<0.755 1.46	<0.296 2.11	<0.261 2.57	<17.4 38.1	<0.199 0.224	<0.44 1.1
1,2,3-Trimethylbenzene 1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
1,2,4-Trimethylbenzene	3,900 ⁽²⁾	100,000 (2)	100,000 (2)	73 ⁽²⁾	120 ⁽²⁾	0.25 (2)		300	18 ⁽²⁾			1.1	9.88	<3.86	5.19	5.19	65	1.19	1.03	1.11	1.06	28	0.0990	<0.22
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.23	0.0073	0.054	0.002			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.077	<0.22
1,2-Dibromoethane (EDB)	0.40	2.9	62	0.06	0.12	0.11	0.0073	0.034	0.002			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 (2)	72 (2)	0.15 (2)			10 (2)			0.94	<4	<3.86	2.4	2.5	17.3	0.321	< 0.377	<0.148	<0.13	15.3	0.048	0.823
1,3-Dichlorobenzene												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 (2)	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	< 0.22
1,4-Dichlorobenzene				11,000	17,000	340			2			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
1-Chlorobutane	3,100 ⁽²⁾	82,000 ⁽²⁾	14,000 ⁽²⁾	1,200 (2)	1,200 ⁽²⁾	1,200 (2)			3.1 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
2,2-Dichloropropane												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
2-Butanone (methyl ethyl ketone)	47,000 (2)	1,000,000 (2)	120,000 (2)	25,000 (2)	25,000 (2)	710 ⁽²⁾	23,000	23,000	17 ⁽²⁾			<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	< 0.996	<2.2
2-Chlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41,000 ⁽²⁾	1,400 ⁽²⁾	1,400 ⁽²⁾	1,400 ⁽²⁾			4 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
2-Hexanone									-			<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	<0.996	<2.2
2-Nitropropane												<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	<0.996	<2.2
4-Chlorotoluene				(2)	(2)	(2)						<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
4-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 (2)	340 ⁽²⁾						<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	<0.996	<2.2
Acetone	70,000	4 000 (2)	4 000 (2)	100,000	100,000	100,000	100,000	100,000	25	7,800		<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	0.35	<2.2
Acrolein	39 ⁽²⁾ 1.2 ⁽²⁾	1,000 ⁽²⁾ 11 ⁽²⁾	1,600 (2)	0.16 ⁽²⁾ 0.28 ⁽²⁾	0.26 ⁽²⁾ 0.54 ⁽²⁾	0.017 ⁽²⁾ 0.17 ⁽²⁾			0.014 (2)			<90	<88.6	<77.3	<77.4	<92.9	<75.8	<2.43	<7.55	<2.96	<2.61	<174	<1.99	<4.4
Acrylonitrile	1.2	1111	230 (2)	0.28	0.54 17	0.17			0.0006 (2)			<9	<8.86	<7.73	<7.74	<9.29	<7.58	<0.243	< 0.755	<0.296	<0.261	<17.4	<0.199	< 0.44
Allyl chloride	1,600 (2)	41.000 (2)	41,000 (2)	100 (2)	160 (2)	11 ⁽²⁾			2.2 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	< 3.79	<0.121	< 0.377	<0.148 <0.148	<0.13	<8.71	<0.0996	<0.22
Bromobenzene Bromochloromethane	1,000	+1,000	+1,000	100 - 7	100	11111			۷.۷			<4.5 <4.5	<4.43 <4.43	<3.86 <3.86	<3.87 <3.87	<4.65 <4.65	<3.79 <3.79	<0.121 <0.121	<0.377 <0.377	<0.148	<0.13 <0.13	<8.71 <8.71	<0.0996 <0.0996	<0.22 <0.22
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<4.5 <4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<9	<8.86	<7.73	<7.74	<9.29	<7.58	<0.121	<0.755	<0.146	<0.13	<17.4	<0.199	<0.44
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Chloroethane												<9	<8.86	<7.73	7.74	<9.29	<7.58	<0.243	<0.755	<0.296	<0.261	<17.4	<0.199	<0.44
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	< 0.22
Chloromethane (methyl chloride)												<9	<8.86	<7.73	<7.74	<9.29	<7.58	< 0.243	< 0.755	< 0.296	<0.261	<17.4	< 0.199	<0.44
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	<0.22
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<3.6	<3.54	<3.09	<3.1	<3.72	<3.03	< 0.0971	<0.302	<0.119	<0.104	<6.96	<0.0796	<0.176
Cyclohexanone	390,000 (2)	1,000,000 (2)	1,000,000 (2)	660 ⁽²⁾	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<90	<88.6	<77.3	<77.4	<92.9	<75.8	<2.43	<7.55	<2.96	<2.61	<174	<1.99	<4.4
Dibromochloromethane (chlorodibrome		41,000	41,000	1,300	1,300	1,300	630	630	0.4			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Dibromomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Dichlorodifluoromethane	16,000 ⁽²⁾				310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<9	<8.86	<7.73	<7.74	<9.29	<7.58	<0.243	<0.755	<0.296	<0.261	<17.4	<0.199	<0.44
Ethyl acetate	70,000 (2)	1,000,000 (2)			10,000 (2)	10,000 (2)			26 (2)			<45	<44.3	<38.6	<38.7	<46.5	<37.9	0.56	<3.77	0.68	0.54	<87.1	< 0.996	<2.2
Ethyl ether	16,000 ⁽²⁾	410,000 ⁽²⁾	410,000 ⁽²⁾	8,800 (2)	8,800 (2)	8,800 ⁽²⁾			6.1 ⁽²⁾			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Ethyl methacrylate												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22
Heptane												<18	<17.7	<15.5	<15.5	<18.6	<15.2	<0.486	<1.51	0.25	<0.522	<34.8	<0.398	<0.31
Hexachlorobutadiene												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	<0.22

Page 15 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

Notes:

10 Objectives are for Class I Groundwater.

12 Non-TACO or provisional ROs provided by the IEPA.

13 Non-TACO or provisional ROs provided by the IEPA, or the sample was not analyzed for this constituent.

14 Concentration exceeds one or more project remediation objective.

TABLE 5-2 Soil Confirmation Sample Analytical Results For Excavation Wall - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:		P7-C1-SW	P7-C1-SW	P7-CD1-SW	P7-CD1-SW	P7-D1-W	P7-DE1-W	P7-DE1-W	P8-H1-W	P8-H4-W	P9-D1-W	P9-H1-W	P9-H
									Soil	Project	Sample ID:	P7-BC1-SW (8)	٠,	. ,	. ,	P7-CD1-SW (8)	. ,	P7-DE1-W (3)	P7-DE1-W (8)	P8-H1-W (3)	P8-H4-W (3)	P9-D1-W (8)	P9-H1-W (15)	
		Soil Ingestion	_		Soil Inhalation			or Air	Component	Remediation	Sample Date:	2/15/2011	2/15/2011	2/15/2011	2/17/2011	2/17/2011	3/2/2011	3/2/2011	3/2/2011	4/6/2011	4/6/2011	6/7/2011	5/25/2011	5/1
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	8	3	21	3	8	8	3	8	3	3	8	15	
exachloroethane	78	2,000	2,000				160	160	0.5			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	<0.377	<0.148	<0.13	<8.71	<0.0996	
odomethane												<9	<8.86	<7.73	<7.74	<9.29	<7.58	< 0.243	< 0.755	< 0.296	<0.261	<17.4	< 0.199	
opropylbenzene (cumene)	7,800 ⁽²⁾	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			0.98	4.43	<3.86	2.5	<2.7	<6.2	0.189	0.35	1.03	0.489	15.9	< 0.053	
lethacrylonitrile												<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	< 0.996	
lethyl Methacrylate												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
ethyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<1.8	<1.77	<1.55	<1.55	<1.86	<1.52	<0.0486	<0.151	< 0.0593	< 0.0522	<3.48	<0.0398	
ethylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			<9	<8.86	<7.73	<7.74	<9.29	<7.58	< 0.243	< 0.755	< 0.296	<0.261	<17.4	<0.199	
ethylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	0.083	<0.148	<0.13	<8.71	< 0.0996	
aphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		71.3	110	2.6	98.5	370	2150	0.685	113	13.1	3.01	668	3.33	
Butylbenzene												<4.5	<4.43	<3.86	0.8	1	4.81	1.19	0.22	2.92	1.19	<8.71	<0.0996	7
Hexane				290 ⁽²⁾	290 ⁽²⁾	15 ⁽²⁾						<18	<17.7	<15.5	<15.5	<18.6	<15.2	< 0.486	<1.51	< 0.593	< 0.522	<34.8	< 0.398	
itrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<90	<88.6	<77.3	<77.4	<92.9	<75.8	<2.43	<7.55	<2.96	<2.61	<174	<1.99	
Propylbenzene												<4.5	2.5	<3.86	1.4	1.5	5.61	0.254	0.33	0.796	0.367	12.6	0.037	
entachloroethane												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	< 0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
Isopropyltoluene												<4.5	<4.43	<3.86	2.5	<4.65	2.8	0.422	< 0.377	<0.148	< 0.13	<8.71	< 0.0996	
ropionitrile												<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	< 0.996	
ec-Butylbenzene												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	0.335	< 0.377	0.459	0.136	<8.71	< 0.0996	
yrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	< 0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
rt-Butylbenzene												<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
etrahydrofuran												<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	< 0.996	
ans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
ans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<3.6	<3.54	<3.09	<3.1	<3.72	<3.03	< 0.0971	< 0.302	< 0.119	<0.104	<6.96	< 0.0796	
ichloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	< 0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
ichlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 (2)	31	190	34 (2)			<4.5	<4.43	<3.86	<3.87	<4.65	<3.79	<0.121	< 0.377	<0.148	<0.13	<8.71	< 0.0996	
nyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<45	<44.3	<38.6	<38.7	<46.5	<37.9	<1.21	<3.77	<1.48	<1.3	<87.1	< 0.996	
nyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<1.8	<1.77	<1.55	<1.55	<1.86	<1.52	< 0.0486	< 0.151	< 0.0593	< 0.0522	<3.48	< 0.0398	

Page 16 of 16 Table 5-2 - Wall Ameren Champaign Soil Confirmation Samples - VOCs.xls

TABLE 5-3 Soil Confirmation Sample Analytical Results For Excavation Wall - SVOCs Champaign Former MGP Ameren Illinois

									Cc.ii	Droin of	Sample Location:	P1-A2-W	P1-A3-W	P1-A3-W	P1-A4-W	P2-A1-W	P3-B.5-W	P3-B.5-W	P3-C1-W	P3-C1-W	P3-A.5-W	P3-A.5-W	P3-B-W	P3-B-W	P3-C.5-W	P3-D-W
		Soil Ingestion	1		Soil Inhalation		Indoo	or Air	Soil Component	Project Remediation	Sample ID: Sample Date:	P1-A2-W (0-3) 6/30/2009	7/7/2009	7/7/2009	P1-A4-W (20) 7/7/2009) P2-A1-W (3) 10/23/2009	P3-B.5-W (8) 1/14/2010	P3-B.5-W (15) 1/14/2010	P3-C1-W (10) 1/14/2010	P3-C1-W (18) 1/14/2010	P3-A.5-W (8) 1/20/2010	P3-A.5-W (20) 1/20/2010	P3-B-W (8) 1/20/2010	P3-B-W (20) 1/20/2010	P3-C.5-W (20) 1/20/2010	P3-D-W (8) 1/20/2010
Constituent	Residential	•		n Residential					to Groundwater ⁽¹⁾		Sample Depth (feet):	0-3	3'	20'	20'	3	8	15	10	18	8	20	8	20	20	8
Semivolatile Organic Compounds (mg/kg)										•	/															•
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
1,2-Diphenylhydrazine												<54.4	<69.3	<9.62	<9.52	<19.6	<29	<23.5	<80.6	<71.6	<28.9	<24	<39.1	<24.2	<24.1	<26.9
1,3-Dichlorobenzene												<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
1,4-Dichlorobenzene	7.000			11,000	17,000	340	1.3	9.8	2			<32.4	<41.2	<5.73	5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	7,800 58	200,000 520	200,000 11,000	200 200	390	E40			130 0.09			<22.6 <22.6	<28.9 <28.9	<4.01 <4.01	<3.97 <3.97	<8.17 <8.17	<12.1 <12.1	<9.81 <9.81	<33.6 <33.6	<29.8 <29.8	<12.1 <12.1	<9.99 <9.99	<16.3 <16.3	<10.1 <10.1	<10.1 <10.1	<11.2 <11.2
2,4-Dichlorophenol	230	6.100	610	200	390	340			0.86			<32.4	<41.2	<5.73	<5.67	<0.17 <11.7	<17.3	<9.01 <14	<33.0 <48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
2,4-Dimethylphenol	1,600	41,000	41,000						9			<32.4	<41.2	<5.73	<5.67	<11.7	70.7	22.3	46	209	24.4	5	43.9	9.8	6.6	<16
2,4-Dinitrophenol	160	4,100	410						0.2			<64.7	<82.5	<11.5	11.3	<23.4	<34.5	<28	<95.9	<85.2	<34.4	<28.5	<46.5	<28.8	<28.7	<32.1
2,4-Dinitrotoluene	0.9	8.4	180						0.0008			<22.6	<28.9	<4.01	3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
2,6-Dinitrotoluene	0.9	8.4	180						0.0007			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
2-Chloronaphthalene (beta-chloronaphthalene)	6,300 ⁽²⁾	160,000 ⁽²⁾	160,000 ⁽²⁾						49 ⁽²⁾			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
2-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	49,000	49,000	4			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
2-Methoxy-4-methylphenol	240 (2)	0.000 (2)	000 (2)						 7 0 (2)			<42.1	<53.6	<7.44	<7.37	<15.2	<22.4	<18.2	<62.3	<55.4	<22.4	<18.6	<30.2	<18.7	<18.7	<20.9
2-Methylnaphthalene 2-Nitroaniline	310 ⁽²⁾ 230 ⁽²⁾	8,200 ⁽²⁾ 6,100 ⁽²⁾	820 ⁽²⁾ 610 ⁽²⁾	35 ⁽²⁾	56 ⁽²⁾	3.6 ⁽²⁾	83	83	7.2 ⁽²⁾ 0.14 ⁽²⁾	83		93.4 <64.7	207 <82.5	84.8 <11.5	81.3 <11.3	21.4 <23.4	194 <34.5	6.4 <28	367 <95.9	232 <85.2	85.5 <34.4	<9.99 <28.5	210 <46.5	<10.1 <28.8	4.6 <28.7	315 <32.1
2-Nitrophenol	230	0,100	010			3.0			0.14			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
3,3´-Dichlorobenzidine	1	13	280						0.007			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
3-Nitroaniline	23 (2)	610 ⁽²⁾	61 ⁽²⁾	250 ⁽²⁾	400 (2)	26 (2)			0.01 (2)			<64.7	<82.5	<11.5	<11.3	<23.4	<34.5	<28	<95.9	<85.2	<34.4	<28.5	<46.5	<28.8	<28.7	<32.1
4,6-Dinitro-2-methylphenol	7.8	200	820						0.0031			<64.7	<82.5	<11.5	<11.3	<23.4	<34.5	<28	<95.9	<85.2	<34.4	<28.5	<46.5	<28.8	<28.7	<32.1
4-Bromophenyl phenyl ether												<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
4-Chloro-3-methylphenol												<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
4-Chloroaniline (p-chloroaniline)	310	8,200	820						0.7			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
4-Chlorophenyl phenyl ether 4-Nitroaniline (p-nitroaniline)	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	1,000 ⁽²⁾	1.600 ⁽²⁾	110 ⁽²⁾			0.1 ⁽²⁾			<22.6	<28.9	<4.01	< 3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
4-Nitrophenol	630 ⁽²⁾	16,000 ⁽²⁾	16,000 ⁽²⁾	1,000	1,000	110			0.1 ⁴			<32.4 <22.6	<41.2 <28.9	<5.73 <4.01	<5.67 <3.97	<11.7 <8.17	<17.3 <12.1	<14 <9.81	<48 <33.6	<42.6 <29.8	<17.2 <12.1	<14.3 <9.99	<23.3 <16.3	<14.4 <10.1	<14.4 <10.1	<16 <11.2
Aniline	110 ⁽²⁾	1,000 (2)	1.400 (2)	81 ⁽²⁾	130 ⁽²⁾	8.4 ⁽²⁾			0.063 ⁽²⁾			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
Azobenzene												<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Benzidine	0.003 (2)	0.02 (2)	0.54 (2)	0.009 (2)	0.02 (2)	0.02 (2)			0.0000022			<68.3	<87.1	<12.1	<12	<24.7	<36.5	<29.6	<101	<90	<36.4	<30.1	<49.1	<30.4	<30.3	<33.9
Benzoic acid	310,000	1,000,000	820,000						400			<97.1	<124	<17.2	<17	<35	<51.8	<42	<144	<128	<51.7	<42.8	<69.8	<43.2	<43.1	<48.1
Benzyl alcohol	39,000	1,000,000	200,000	6,100	6,100	6,100			15			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
Bis(2-chloroethoxy)methane												<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Bis(2-chloroethyl)ether	0.6	5	75	0.2	0.47	0.66	0.5	3.7	0.0004			<32.4	<41.2	<5.73	< 5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
Bis(2-chloroisopropyl)ether	3,100 ⁽²⁾ 16,000	82,000 ⁽²⁾	8,200 ⁽²⁾ 410,000	1,300 ⁽²⁾ 930	1,300 ⁽²⁾ 930	1,300 ⁽²⁾ 930			2.4 ⁽²⁾ 930			<22.6 <22.6	<28.9 <28.9	<4.01 <4.01	<3.97 <3.97	<8.17 <8.17	<12.1 <12.1	<9.81 <9.81	<33.6 <33.6	<29.8 <29.8	<12.1 <12.1	<9.99 <9.99	<16.3 <16.3	<10.1 <10.1	<10.1 <10.1	<11.2 <11.2
Butyl benzyl phthalate Carbazole	32	410,000 290	6,200	930	930	930			0.6			<32.4	<41.2	<5.73	<5.67	3.6	46.7	<9.01 <14	<33.0 61	31	12.1	<14.3	23.7	<14.4	<14.4	6.2
Dibenzofuran	160 ⁽²⁾	4,100 ⁽²⁾	4.100 ⁽²⁾						6.1 ⁽²⁾	310		<22.6	14	3.9	4.35	16.6	114	<9.81	163	87.3	27.7	<9.99	64.1	<10.1	<10.1	16.3
Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000			470			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
Dimethyl phthalate												<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Di-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300			2,300			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Di-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000			10,000			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Hexachlorobenzene	0.4	4	78	1	1.8	2.6	0.25	0.25	2			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
Hexachlorobutadiene		14.000	14.000	10	 16	1.1		30	400			<32.4	<41.2	< 5.73	< 5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
Hexachlorocyclopentadiene Hexachloroethane	550 78	14,000 2,000	14,000 2,000	10 		1.1	5 160	160	400 0.5			<22.6 <32.4	<28.9 <41.2	<4.01 <5.73	<3.97 <5.67	<8.17 <11.7	<12.1 <17.3	<9.81 <14	<33.6 <48	<29.8 <42.6	<12.1 <17.2	<9.99 <14.3	<16.3 <23.3	<10.1 <14.4	<10.1 <14.4	<11.2 <16
Isophorone	15,600	410,000	410,000	4,600	4,600	4,600	1,800	1,800	8			<22.6	<28.9	<4.01	<3.97	<8.17	<12.1	<9.81	<33.6	<29.8	<12.1	<9.99	<16.3	<10.1	<10.1	<11.2
m,p-Cresol	390 ⁽³⁾	10,000 ⁽³⁾	1,000 (3)	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾			0.2 (3)			<32.4	<41.2	<5.73	< 5.67	<11.7	37.7	60.8	<48	305	32.2	5	50.3	37	3.6	<16
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
N-Nitrosodimethylamine	0.013	0.11	1.6	0.012	0.023	0.032			0.0000067			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
N-Nitroso-di-n-propylamine	0.09	8.0	18						0.00005			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
N-Nitrosodiphenylamine	130	1,200	25,000						1			<32.4	<41.2	<5.73	<5.67	<11.7	<17.3	<14	<48	<42.6	<17.2	<14.3	<23.3	<14.4	<14.4	<16
o-Cresol	3,900	100,000	100,000				4,800	4,800	15			<32.4	<41.2	<5.73	<5.67	<11.7	17	22	<48	107	14	<14.3	22	15.4	<14.4	<16
Pentachlorophenol	3	24	520				10.000	10.000	0.03			<129	<165	<22.9	22.7	<46.7	<69.1	<56.1	<192	<170	<68.9	<57.1	<93.1	<57.6	<57.5	<64.2
Phenol Pyridine	23,000 78 \ ² /	610,000 2,000 (*)	61,000 2,000 (2)	200,000 (4)	200,000 (4)	200,000 (4)	12,000	12,000	100 0.032 (2)			<22.6 <32.4	<28.9 <41.2	<4.01 <5.73	<3.97 <5.67	<8.17 <11.7	9.2 <17.3	35 <14	<33.6 <48	61.8 <42.6	22.7 <17.2	4.5 <14.3	30 <23.3	33.7 <14.4	<10.1 <14.4	<11.2 <16
Notes:		2,000	2,000	200,000	200,000	_00,000			0.002			~ JZ.4	> 41.∠	\J.13	\J.U /	N11.1	N11.3	\14	\40	N4Z.U	N11.Z	\14.0	~23.3	\14.4	\14.4	\10

⁽¹⁾ Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

Objective is for m-cresol.

Objective is for m-cresol.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

^{*}Note: Hatched columns represent areas that have been removed during remediation.

TABLE 5-3 Soil Confirmation Sample Analytical Results For Excavation Wall - SVOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P3-E.5-W	P3-A1.5-W	P3-A1.5-W	P3-A2.5-W	P4-A1-W	P4-A2-W	P4-A2-W	P4-A3-W	P5-A3-W	P7-B1-SW
									Soil	Project	Sample ID:	P3-E.5-W (8)	P3-A1.5-W (8)			P4-A1-W (20)	P4-A2-W (3)	P4-A2-W (20)	P4-A3-W (3)	P5-A3-W (3)	P7-B1-SW (3)
.		Soil Ingestion			Soil Inhalation			or Air	Component	Remediation	Sample Date:	1/27/2010	1/27/2010	1/27/2010	1/27/2010	3/31/2010	3/29/2010	3/31/2010	3/29/2010	7/14/2010	2/15/2011
Constituent	Residential	Commercial	Construction	Residentia	al Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	Objectives S	ample Depth (feet):	8	8	20	20	20	3	20	3	3	3
Semivolatile Organic Compounds (mg/kg)												.									
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
1,2-Dichlorobenzene 1,2-Diphenylhydrazine	7,000	180,000	18,000	560	560 	310	200	200	17 			<31.4 <52.7	<32.6 <54.8	<2.79 <4.69	<0.551 <0.926	<27.2 <45.7	<34.7 <58.3	<14.1 <23.7	<35.3 <59.4	<6.7 <11.3	<15.8 <26.6
1,3-Dichlorobenzene												<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
1,4-Dichlorobenzene				11,000	17,000	340	1.3	9.8	2			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
2,4,5-Trichlorophenol	7,800	200,000	200,000	200					130			<22	<22.8	<1.95	< 0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
2,4,6-Trichlorophenol	58	520	11,000	200	390	540			0.09			<22	<22.8	<1.95	< 0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
2,4-Dichlorophenol	230	6,100	610						0.86			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
2,4-Dimethylphenol	1,600	41,000	41,000						9			<31.4	9.9	4.75	1.75	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
2,4-Dinitrophenol	160	4,100	410						0.2			<62.8	<65.3	<5.58	<1.1	<54.4	<69.4	<28.2	<70.7	<13.4	<31.7
2,4-Dinitrotoluene	0.9	8.4	180						0.0008			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
2,6-Dinitrotoluene 2-Chloronaphthalene (beta-chloronaphthalene)	0.9) 6,300 ⁽²⁾	8.4 160,000 ⁽²⁾	180 160,000 ⁽²⁾						0.0007 49 ⁽²⁾			<22 <22	<22.8 <22.8	<1.95 <1.95	<0.386 <0.386	<19 <19	<24.3 <24.3	<9.87 <9.87	<24.7 <24.7	<4.69 <4.69	<11.1 <11.1
2-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	49,000	49,000	49			<31.4	<32.6	<2.79	<0.551	<27.2	<24.3 <34.7	<9.67 <14.1	<35.3	<6.7	<15.8
2-Methoxy-4-methylphenol							49,000	49,000				<40.8	<42.4	<3.63	<0.717	<35.4	<45.1	<18.3	<45.9	<8.72	<20.6
2-Methylnaphthalene	310 ⁽²⁾	8,200 (2)	820 ⁽²⁾				83	83	7.2 (2)	83		84	23.9	<1.95	0.28	589	175	169	338	197	7.7
2-Nitroaniline	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	35 ⁽²⁾	56 ⁽²⁾	3.6 (2)			0.14 (2)			<62.8	<65.3	<5.58	<1.1	<54.4	<69.4	<28.2	<70.7	<13.4	<31.7
2-Nitrophenol												<22	<22.8	<1.95	< 0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
3,3'-Dichlorobenzidine	1	13	280						0.007			<22	<22.8	<1.95	< 0.386	<190	<24.3	<9.87	<24.7	<4.69	<11.1
3-Nitroaniline	23 (2)	610 ⁽²⁾	61 ⁽²⁾	250 ⁽²⁾	400 (2)	26 ⁽²⁾			0.01 (2)			<62.8	<65.3	<5.58	<1.1	<54.4	<69.4	<28.2	<70.7	<13.4	<31.7
4,6-Dinitro-2-methylphenol	7.8	200	820						0.0031			<62.8	<65.3	<5.58	<1.1	<54.4	<69.4	<28.2	<70.7	<13.4	<31.7
4-Bromophenyl phenyl ether												<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
4-Chloro-3-methylphenol	240								0.7			<31.4	<32.6	<2.79	< 0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
4-Chlorophopul phopul other	310	8,200	820						0.7			<31.4 <22	<32.6 <22.8	<2.79	<0.551	<27.2 <19	<34.7	<14.1 <9.87	<35.3 <24.7	< 6.7	<15.8
4-Chlorophenyl phenyl ether 4-Nitroaniline (p-nitroaniline)	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	1,000 (2)	1,600 ⁽²⁾	110 ⁽²⁾			0.1 ⁽²⁾			<31.4	<22.6 <32.6	<1.95 <2.79	<0.386 <0.551	<27.2	<24.3 <34.7	<9.07 <14.1	<24.7 <35.3	<4.69 <6.7	<11.1 <15.8
4-Nitrophenol	630 ⁽²⁾	16,000 ⁽²⁾	16,000 ⁽²⁾	1,000		110			0.24 (2)			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Aniline	110 ⁽²⁾	1,000 (2)	1,400 (2)	81 ⁽²⁾	130 ⁽²⁾	8.4 (2)			0.063 (2)			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Azobenzene												<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Benzidine	0.003 (2)	0.02 (2)	0.54 (2)	0.009 (2)	0.02 (2)	0.02 (2)			0.0000022			<66.3	<68.9	<5.89	<1.16	<575	<73.3	<29.8	<74.6	<14.2	
Benzoic acid	310,000	1,000,000	820,000						400			<94.2	<97.9	<8.37	<1.65	<81.6	<104	<42.3	<106	<20.1	<47.5
Benzyl alcohol	39,000	1,000,000	200,000	6,100	6,100	6,100			15			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Bis(2-chloroethoxy)methane												<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Bis(2-chloroethyl)ether	0.6	5	75	0.2	0.47	0.66	0.5	3.7	0.0004			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Bis(2-chloroisopropyl)ether	3,100 (2)	82,000 ⁽²⁾	8,200 (2)	1,300 (2)	1,300 (2)	1,300 (2)			2.4 (2)			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Butyl benzyl phthalate	16,000	410,000	410,000	930	930	930			930			<22	<22.8	<1.95	< 0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Carbazole	32 160 ⁽²⁾	290 4,100 ⁽²⁾	6,200 4,100 ⁽²⁾						0.6 6.1 ⁽²⁾	310		<31.4 <22	<32.6 8.8	<2.79	<0.551	<27.2 24.8	<34.7	<14.1 6.9	<35.3 12	< 6.7	<15.8
Dibenzofuran Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000			470	310		<31.4	o.o <32.6	<1.95 <2.79	<0.386 <0.551	24.0 <27.2	<24.3 <34.7	6.9 <14.1	<35.3	9.76 <6.7	7.2 <15.8
Dimethyl phthalate				2,000	2,000	2,000			470			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Di-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300			2,300			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Di-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000			10,000			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Hexachlorobenzene	0.4	4	78	1	1.8	2.6	0.25	0.25	2			<22	<22.8	<1.95	< 0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Hexachlorobutadiene												<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Hexachlorocyclopentadiene	550	14,000	14,000	10	16	1.1	5	30	400			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Hexachloroethane	78	2,000	2,000				160	160	0.5			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Isophorone	15,600	410,000	410,000	4,600	4,600	4,600	1,800	1,800	8			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
m,p-Cresol	390 ⁽³⁾	10,000 ⁽³⁾	1,000 (3)	8,100 (4)	8,100 (4)	8,100 (4)	440		0.2 (3)			<31.4	12	0.88	0.35	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
N-Nitrosodimethylamine	0.013 0.09	0.11 0.8	1.6 18	0.012	0.023	0.032			0.0000067 0.00005			<31.4 <31.4	<32.6 <32.6	<2.79 <2.79	<0.551 <0.551	<27.2 <27.2	<34.7 <34.7	<14.1 <14.1	<35.3 <35.3	<6.7 <6.7	<15.8 <15.8
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine	130	1,200	25,000						0.00005			<31.4 <31.4	<32.6	<2.79 <2.79	<0.551	<27.2 <27.2	<34.7 <34.7	<14.1	<35.3	<6.7	<15.6 <15.8
o-Cresol	3,900	100,000	100,000				4,800	4,800	15			<31.4	<32.6	<2.79	0.22	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8
Pentachlorophenol	3	24	520						0.03			<126	<131	<11.2	<2.21	<109	<139	<56.4	<141	<26.8	<63.3
Phenol	23,000	610,000	61,000				12,000	12,000	100			<22	<22.8	<1.95	<0.386	<19	<24.3	<9.87	<24.7	<4.69	<11.1
Pyridine	78 ⁽⁴⁾	2,000 (4)	2,000 (4)	200,000 (4	200,000 (2)	200,000 (4)			0.032 (4)			<31.4	<32.6	<2.79	<0.551	<27.2	<34.7	<14.1	<35.3	<6.7	<15.8

Objectives are for Class I Groundwater.
 Non-TACO or provisional ROs provided by the IEPA.

Objective is for p-cresol.

Objective is for m-cresol.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

^{*}Note: Hatched columns represent areas that have been removed during remediation.

TABLE 5-4 Soil Confirmation Sample Analytical Results For Excavation Wall - Inorganic Champaign Former MGP Ameren Illinois

-										IEPA Accepted		Location:	P1-A4-W	P2-A2-W	P9-D1-W	P9-E1-W	P9-F1-W	P9-H4-W
									Soil	Background	Project	Sample ID:	P1-A4-W	P2-A2-W (3)	P9-D1-W (3)	P9-E1-W (8)	P9-F1-W (3)	P9-H4W (3)
		Soil Ingestion	n		Soil Inhalation	1	Indo	or Air	Component	Levels	Remediation	Sample Date:	7/7/2009	10/27/2009	6/7/2011	6/7/2011	5/25/2011	5/18/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	for non-MSA	Objective	Depth (feet):	3'	3	3	8	3	3
Metals (mg/kg)																		
Mercury	23	610	61	10	16	0.10	0.45	0.45	6.4	0.06	0.1		0.048	0.044	0.045	0.012	0.052	0.062
Selenium	390	10,000	1,000						3.3	0.48			3.78	7.02	<0.588	< 0.545	< 0.566	< 0.566
Arsenic	13.0	13.0	61.0	750	1,200	25,000			30	13	13		<1.3	2.4	14	8.06	14.1	15.3
Barium	5,500	140,000	14,000	690,000	910,000	870,000			1,800	110			92.5	94.5	208	89.1	180	159
Cadmium	78	2,000	200	1,800	2,800	59,000			59	0.6			0.83	0.66	0.33	<0.2	<0.2	0.2
Chromium	230	6,100	4,100	270	420	690			32	16.2	230		19.9	19.1	25.5	34.3	28	26
Lead	400	800	700						107	36	400		19.8	29.6	15.4	16.1	17	19.8
Silver	390	10,000	1,000						39	0.55			<0.52	<0.52	<0.55	<0.55	<0.54	<0.54
Cyanide (Amenable)	1,600	41,000	4,100						40	0.51	1,600		Interference	Interference	<0.731	1.05	13	9.8
Cyanide (Total)													4.14	9.3	2.41	2.16	29	37

Notes:

(1) Objectives are for Class I Groundwater. '--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-5 Soil Confirmation Sample Analytical Results For Excavation Floor - BTEX and PNAs Champaign Former MGP Ameren Illinois

										IEPA Accepted		Sample Location:	P1-B2-F	P1-D3.5-F	P1-D5-F	P1-F3.5-F	P1-H1-F	P1-F2-F	P1-F5-F	P1-H3.5-F	P1-H5-F	P2-B2.5-F	P2-B4-F	P2-C4-F	P2-D2-F	P2-D4-F	P2-FG-1.5-F
		0 11			0 "				Soil	Background	Project	Sample ID:	P1-B2-F(28)	P1-D3.5-F(25)	P1-D5-F(25)	P1-F3.5-F(20.5)	٠,	P1-F2-F (21)	P1-F5-F (20)		P1-H5-F (20.5)	P2-B2.5-F (22)	P2-B4-F (22)	P2-C4-F (22)			P2-FG-1.5-F (28)
Constituent	Residential	Soil Ingestion	0		Soil Inhalation		Indoo		Component	Levels	Remediation		7/16/2009	7/30/2009	7/30/2009	7/31/2009	8/19/2009	9/9/2009	9/11/2009	9/10/2009	9/10/2009	10/27/2009	10/30/2009	10/30/2009	10/30/2009	10/30/2009	11/19/2009
Constituent	Residential	Commerciai	Construction	Residential	Commercial	Construction	Residential	Commerciai	Groundwater	for MSA	Objectives	ample Depth (feet):	28'	25'	25'	20.5'	20'	21	20	20	20.5	22	22	22	22	22	28
BTEX Constituents (mg/kg)																											
Benzene	12	100	2,300	8.0	1.6	2.2	0.069	0.51	0.03		0.069		30.2	5.39	20.9	3.02	18.6	16.1	41.0	2.58	14.4	5.62	76.4	14.5	35.8	133	8.37
Ethylbenzene	7,800	200,000	20,000	400	400	58	240	240	13		58		<0.846	4	2.7	1.3	11.1	1.1	5.11	3.23	6.95	6.64	3.91	0.96	<26.300	19	0.19
Toluene	16,000	410,000	410,000	650	650	42	130	130	12		42		< 0.846	6.4	30.7	3.9	11.3	19	2.6	2.1	1.9	6.35	10.5	5.86	41.5	186	10.1
m,p-Xylenes	16,000	410,000	41,000	420(1)	420 ⁽¹⁾	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				< 0.846	6.77	3.6	4.1		3.69	11.9	5.74	4.9	6.64	6.78	3.82	25	105	0.956
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				<0.846	3.4	1.9	2.4		1.9	9.27	2.9	5.73	3.32	3.04	1.8	11	45.4	0.55
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		< 0.846	10.17	5.5	6.5	18.7	5.59	21.17	8.64	10.63	9.96	9.82	5.62	36	150.4	1.506
PNA Constituents (mg/kg)																											
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		1.42	1.83	0.302	6	0.324	1.22	0.008	0.023	2.83	0.924	0.061	1.1	3.49	5.78	0.006
Acenaphthylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		1.48	1.63	0.063	21.1	0.162	7.96	0.038	0.059	0.478	0.765	0.367	8.99	34.8	60.3	0.071
Anthracene	23,000	610,000	610,000						12,000	0.4			1.36	1.6	0.148	15.1	0.265	4.09	0.019	0.029	1.53	0.651	0.131	3.34	11.3	19.5	0.041
Benzo(a)anthracene	0.90	8	170						2	1.8	2		0.756	1.16	0.101	10.1	0.089	2.99	0.015	0.02	0.942	0.394	0.11	1.89	6.98	13.1	0.03
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		0.686	1.18	0.105	11.3	0.075	3.12	0.015	0.018	0.845	0.391	0.094	2.1	7.1	14.4	0.028
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		0.549	0.996	0.096	8.4	0.07	2.27	0.012	0.015	0.668	0.31	0.071	1.51	5.83	11.2	0.022
Benzo(g,h,i)perylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			0.238	0.599	0.056	4.77	0.035	1.42	0.009	0.009	0.377	0.137	0.037	0.82	2.67	5.84	0.012
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		0.194	0.382	0.032	2.79	0.021	0.757	0.004	0.005	0.227	0.096	0.026	0.522	1.99	3.8	0.007
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				< 0.371	<0.752	< 0.075	<7.62	<0.077	<7.46	< 0.073	< 0.076	<1.87	< 0.372	< 0.375	<1.95	<7.8	<7.54	< 0.074
Chrysene	88	780	17,000						160	2.7	88		0.848	1.29	0.108	11.3	0.094	3.04	0.017	0.021	0.949	0.455	0.091	2.18	7.82	14.1	0.031
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		0.073	0.14	0.014	1.1	0.009	<0.378	<0.004	<0.004	0.093	0.036	<0.019	0.189	0.667	1.32	<0.004
Fluoranthene	3,100	82,000	82,000						4,300	4.1			1.78	2.52	0.212	19.4	0.225	5.68	0.028	0.042	2.11	0.841	0.174	3.99	17	32.4	0.064
Fluorene	3,100	82,000	82,000						560	0.18	3,100		1.58	1.97	0.174	16.6	0.241	4.62	0.021	0.048	1.67	0.688	0.158	3.85	14.9	26.2	0.041
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		0.226	0.476	0.044	3.56	0.031	1.03	0.006	0.007	0.295	0.11	0.028	0.617	2.23	4.54	0.009
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		4.53	12.4	0.66	136	8.82	36.5	0.548	0.608	20.2	5.31	1.46	30.2	134	223	0.106
Phenanthrene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		4.83	6.45	0.557	53.9	0.702	14.8	0.066	0.107	5.63	2.49	0.509	12.8	52	98.2	0.172
Pyrene	2,300	61,000	61,000						4,200	3			2.55	3.63	0.3	30.2	0.296	8.17	0.043	0.061	2.91	1.24	0.258	5.88	23.3	44.3	0.095

Notes:

(1) Objective is for m-xylene
(2) Objective is for p-xylene
(3) Objectives are for Class I groundwater.
(4) Non-TACO or provisional ROs provided by the IEPA.
(-- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-5 Soil Confirmation Sample Analytical Results For Excavation Floor - BTEX and PNAs Champaign Former MGP Ameren Illinois

										EPA Accepte	1	Sample Location:	P2-FG-3.5-F	P2-E2.5-F	P2-E4-F	P3-B2-F	P3-B2-F	P3-C2-F	P3-C3-F	P3-C3-F	P3-D2-F	P3-D2-F	P3-DE1.5-F	P3-DE1-F	P3-E3-F	P3-E3-F	P3-F2-F
									Soil	Background	Project		P2-FG-3.5-F (24)		P2-E4-F (24)	P3-B2-F (22)	P3-B2-F (24)	P3-C2-F (24)	P3-C3-F (22)	P3-C3-F (24)	P3-D2-F (22)	P3-D2-F (24)	P3-DE1.5-F (23)		P3-E3-F (24)	P3-E3-F (25)	P3-F2-F (23)
		Soil Ingestion			Soil Inhalation	ı	Indo	or Air	Component	Levels	Remediation	Sample Date:	11/19/2009	11/25/2009	11/25/2009	1/13/2010	1/13/2010	1/26/2010	1/25/2010	1/26/2010	1/25/2010	1/26/2010	1/29/2010	1/29/2010	1/28/2010	2/4/2010	2/3/2010
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	Groundwater	for MSA	Objectives	ample Depth (feet):	24	24	24	22	24	24	22	24	22	24	23	23	24	25	23
BTEX Constituents (mg/kg)																											
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		21.9	21.8	10.7	2.97	0.0773	2.45	8.7	0.0765	17.8	26.4	6.32	29.2	11.7	27.6	32.3
Ethylbenzene	7,800	200,000	20,000	400	400	58	240	240	13		58		0.275	1.2	3.4	0.59	0.0015	0.16	<4.04	<0.161	2.6	1.85	<7.88	<7.5	5.39	0.036	2.2
Toluene	16,000	410,000	410,000	650	650	42	130	130	12		42		16	26.4	10.9	4.2	0.0969	2.26	<4.04	< 0.161	26	3.98	<7.88	2.2	17.1	0.595	25.8
m,p-Xylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				1.44	6.2	5.86	5.03	0.0037	1.08	<4.04	<0.161	21.7	3.79	<7.88	<7.5	11.7	0.111	11.6
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				0.788	3.1	2.4	1.7	0.0019	0.446	<4.04	<0.161	8.34	1.77	<7.88	<7.5	5.84	0.076	5.33
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		2.228	9.3	8.26	6.73	0.0056	1.526	<4.04	<0.161	30.04	5.56	<7.88	<7.5	17.54	0.187	16.93
PNA Constituents (mg/kg)																											
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		0.005	0.034	0.328	0.024	< 0.004	0.038	0.015	< 0.004	1.62	< 0.004	< 0.007	0.03	2.59	< 0.011	0.524
Acenaphthylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		0.025	0.285	1.87	0.239	< 0.004	0.374	0.043	< 0.004	8.47	< 0.004	< 0.007	0.032	10.6	0.028	3.39
Anthracene	23,000	610,000	610,000						12,000	0.4			0.017	0.129	0.823	0.016	< 0.004	0.367	0.051	< 0.004	6.82	< 0.004	< 0.007	0.032	5.06	0.015	1.7
Benzo(a)anthracene	0.90	8	170						2	1.8	2		0.014	0.114	0.52	0.005	0.004	0.248	0.035	0.004	4.49	<0.004	< 0.007	0.021	2.67	0.015	0.995
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		0.011	0.105	0.513	< 0.004	< 0.004	0.17	0.028	< 0.004	3.99	<0.004	< 0.007	0.016	2.37	<0.011	0.902
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		0.009	0.075	0.38	< 0.004	< 0.004	0.195	0.032	< 0.004	4.38	<0.004	< 0.007	0.015	1.85	<0.011	0.75
Benzo(g,h,i)perylene	2,300(4)	61.000 ⁽⁴⁾	61.000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			0.006	0.047	0.213	< 0.004	< 0.004	0.066	0.015	0.006	1.94	<0.004	< 0.007	0.01	0.967	<0.011	0.403
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		<0.004	0.024	0.125	<0.004	< 0.004	0.074	0.012	< 0.004	1.63	< 0.004	< 0.007	< 0.007	0.578	<0.011	0.233
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				< 0.074	< 0.369	< 0.745	< 0.074	< 0.074	< 0.75	< 0.074	< 0.073	<3.76	< 0.074	<0.144	<0.14	<1.48	<0.215	<2.24
Chrysene	88	780	17,000						160	2.7	88		0.011	0.096	0.565	0.004	< 0.004	0.225	0.035	< 0.004	4.3	<0.004	< 0.007	0.02	2.58	0.01	0.937
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		< 0.004	<0.019	0.053	<0.004	< 0.004	< 0.038	0.004	<0.004	0.536	<0.004	< 0.007	< 0.007	0.232	<0.011	<0.114
Fluoranthene	3,100	82,000	82,000						4,300	4.1			0.023	0.21	1.1	0.009	0.005	0.628	0.092	0.004	13.1	<0.004	<0.007	0.048	6.36	0.023	2.06
Fluorene	3,100	82,000	82,000						560	0.18	3,100		0.015	0.147	0.977	0.084	0.004	0.463	0.054	<0.004	7.11	<0.004	<0.007	0.037	8.68	0.019	2.14
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		0.004	0.034	0.162	<0.004	<0.004	0.065	0.012	<0.004	1.76	<0.004	<0.007	<0.007	0.742	<0.011	0.308
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		0.103	2.32	5.9	2.99	0.019	1.65	0.168	0.025	56	0.396	0.041	0.363	52.4	0.147	26
Phenanthrene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		0.062	0.547	3.27	0.056	0.009	1.12	0.175	0.009	20.8	0.003	0.008	0.13	20.2	0.062	5.96
Pyrene	2,300	61,000	61,000						4,200	3			0.034	0.307	1.61	0.006	0.004	0.47	0.075	0.005	10.3	<0.004	<0.007	0.054	9.07	0.029	2.74

Table 5-5 Soil Confirmation Sample Analytical Results For Excavation Floor - BTEX and PNAs Champaign Former MGP Ameren Illinois

										IEDA Assesta		Carrela I acations	D2 F2 F	D2 H4 C E	D4 D2 F	D4 D2 F	D4 D2 F	D4 D2 F	DADACE	D4 FF4 F F	D4 FF2 F	D4 00 F	DA CA E	DACAE	DC DO E	DC D4 C E	D7 CD4 F
									Cail	IEPA Accepte	u Project	Sample Location: Sample ID:	P3-F2-F P3-F2-F (25)	P3-H1.5-F P3-H1.5-F (23)	P4-B2-F P4-B2-F (23)	P4-B3-F P4-B3-F (23)	P4-B2-F P4-B2-F (25)	P4-B3-F P4-B3-F (25)	P4-D4.5-F P4-D4.5-F (25)	P4-EF1.5-F P4-EF1.5-F (25)	P4-EF3-F P4-EF3-F (25)	P4-G2-F P4-G2-F(26)	P4-G4-F P4-G4-F(24)	P4-G4-F P4-G4-F(26)	P5-B2-F P5-B2-F(26)	P6-B4.5-F P6-B4.5-F (25)	P7-CD1-F P7-CD1-F (20)
		Soil Ingestion			Soil Inhalation		Indoo	or Air	Soil Component	Background Levels	Remediation	Sample Date:	2/3/2010	2/3/2010	4/2/2010	4/2/2010	4/7/2010	4/7/2010	4/12/2010	4/12/2010	4/12/2010	5/20/2010	5/20/2010	5/20/2010	7/16/2010	10/15/2010	2/17/2011
Constituent	Residential	•	Construction	Residential	Commercial							ample Depth (feet):	25	23	23	23	25	25	25	25	25	26	24	26	26	25	20
BTEX Constituents (mg/kg)											•																
Benzene	<u>.</u> 12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		23	3.05	114	42.7	91.5	0.728	26.2	0.372	0.2	0.142	7.7	1.39	19.9	0.38	<0.0202
Ethylbenzene	7,800	200,000	20,000	400	400	58	240	240	13		58		<0.531	<0.106	<3.63	<2.22	<40.9	0.44	<3.71	0.031	0.18	<0.237	1.62	0.064	<2.080	0.514	0.136
Toluene	16,000	410,000	410,000	650	650	42	130	130	12		42		3.68	0.024	<3.63	<2.22	<40.9	2.67	1.1	0.139	0.098	0.057	9.16	0.11	5.06	2.12	0.033
m,p-Xylenes	16,000	410,000	41,000	420 ⁽¹⁾	420(1)	$5.9^{(2)}$	75 ⁽²⁾	120 ⁽²⁾	200(2)				< 0.531	< 0.106	<3.63	<2.22			<3.71	0.07	0.19	0.12	3.05	0.066	<2.080	2.45	0.062
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				< 0.531	< 0.106	<3.63	<2.22			<3.71	0.03	0.1	0.066	1.77	0.038	<2.080	1.03	0.053
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		<0.531	<0.106	<3.63	<2.22	<40.9	3.53	<3.71	0.10	0.29	0.186	4.82	0.104	<2.080	3.48	0.115
PNA Constituents (mg/kg)																											
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		< 0.011	< 0.011	0.011	0.012	< 0.004	0.921	0.007	0.12	0.016	0.053	< 0.004	0.017	0.22	0.042	1.36
Acenaphthylene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		< 0.011	< 0.011	0.01	0.025	< 0.004	4.49	0.005	0.505	0.004	0.256	< 0.004	0.021	0.487	0.034	0.316
Anthracene	23,000	610,000	610,000						12,000	0.4			< 0.011	< 0.011	0.011	0.013	< 0.004	2.62	0.003	0.369	0.008	0.212	< 0.004	0.021	0.433	0.048	0.82
Benzo(a)anthracene	0.90	8	170						2	1.8	2		< 0.011	< 0.011	0.009	0.01	< 0.004	1.51	0.004	0.227	0.006	0.134	0.004	0.02	0.318	0.031	0.481
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		< 0.011	< 0.011	0.007	0.008	< 0.004	1.56	< 0.004	0.207	0.005	0.124	< 0.004	0.02	0.261	0.026	0.517
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		< 0.011	< 0.011	0.006	0.007	<0.004	1.15	< 0.004	0.164	0.004	0.099	< 0.004	0.021	0.207	0.021	0.428
Benzo(g,h,i)perylene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			< 0.011	< 0.011	0.005	0.005	< 0.004	0.659	< 0.004	0.088	0.004	0.061	< 0.004	0.016	0.147	0.016	0.265
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		< 0.011	< 0.011	< 0.004	< 0.004	< 0.004	0.364	< 0.004	0.062	< 0.004	0.034	< 0.004	0.006	< 0.097	< 0.007	0.133
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				< 0.219	<0.221	< 0.074	< 0.075	< 0.074	<1.86	< 0.073	< 0.725	< 0.075	< 0.075	< 0.074	< 0.074	<1.91	< 0.145	< 0.371
Chrysene	88	780	17,000						160	2.7	88		<0.011	<0.011	0.007	0.008	< 0.004	1.52	< 0.004	0.215	0.006	0.129	< 0.004	0.017	0.234	0.026	0.508
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		<0.011	<0.011	<0.004	<0.004	<0.004	0.151	< 0.004	< 0.037	< 0.004	0.015	< 0.004	0.003	< 0.097	< 0.007	0.057
Fluoranthene	3,100	82,000	82,000						4,300	4.1			<0.011	<0.011	0.016	0.018	<0.004	3.28	0.004	0.489	0.01	0.271	0.005	0.036	0.536	0.063	1.01
Fluorene	3,100	82,000	82,000						560	0.18	3,100		<0.011	<0.011	0.012	0.018	<0.004	2.77	0.006	0.4	0.011	0.204	<0.004	0.02	0.521	0.047	0.84
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		<0.011	<0.011	<0.004	<0.004	<0.004	0.482	<0.004	0.067	<0.004	0.046	<0.004	0.011	0.105	0.009	0.196
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		0.019	0.029	0.312	0.417	0.045	20.7	0.1	1.23	0.114	1.17	0.135	0.297	2.94	0.21	3.19
Phenanthrene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		<0.011	<0.011	0.042	0.05	0.007	8.92	0.015	1.27	0.033	0.722	0.011	0.081	1.51	0.174	2.82
Pyrene	2,300	61,000	61,000						4,200	3			<0.011	<0.011	0.021	0.025	<0.004	5.08	0.006	0.69	0.015	0.395	0.007	0.052	0.829	0.089	1.65

Page 3 of 4 Table 5-5 - Floor Ameren Champaign Soil Confirmation Samples - BTEX and PNAs.xls

Table 5-5 Soil Confirmation Sample Analytical Results For Excavation Floor - BTEX and PNAs Champaign Former MGP Ameren Illinois

										IEPA Accepted		Sample Location:	P8-E1.2-F	P8-E1.2-F
									Soil	Background	Project	Sample ID:	P8-E1.2-F (20)	P8-E1.2-F (22)
		Soil Ingestion			Soil Inhalation	า	Indo	or Air	Component	Levels	Remediation	Sample Date:	4/11/2011	4/15/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	Groundwater	for MSA	Objectives	ample Depth (feet):	20	22
BTEX Constituents (mg/kg)														
Benzene	12	100	2,300	8.0	1.6	2.2	0.069	0.51	0.03		0.069		1.34	0.0014
Ethylbenzene	7,800	200,000	20,000	400	400	58	240	240	13		58		0.181	< 0.0039
Toluene	16,000	410,000	410,000	650	650	42	130	130	12		42		0.421	0.001J
m,p-Xylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				0.12	0.008J
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				0.324	< 0.0039
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		0.444	0.008J
PNA Constituents (mg/kg)														
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		0.038	0.009
Acenaphthylene	2,300(4)	61.000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		0.131	0.009
Anthracene	23,000	610,000	610,000						12,000	0.4			0.017	0.007
Benzo(a)anthracene	0.90	8	170						2	1.8	2		0.015	0.01
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		0.011	0.006
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		0.009	0.007
Benzo(g,h,i)perylene	2,300(4)	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			0.007	0.006
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		< 0.004	< 0.004
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				< 0.076	< 0.075
Chrysene	88	780	17,000						160	2.7	88		0.012	0.007
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		< 0.004	< 0.004
Fluoranthene	3,100	82,000	82,000						4,300	4.1			0.024	0.014
Fluorene	3,100	82,000	82,000						560	0.18	3,100		0.038	0.008
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		0.004	0.003J
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		2.3	0.033
Phenanthrene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200(4)	2.5	2,300		0.07	0.022
Pyrene	2,300	61,000	61,000						4,200	3			0.038	0.021

Page 4 of 4

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P1-B2-F	P1-B3.5	P1-B5-F	P1-C5-F	P1-D3.5-F	P1-D5-F	P1-F3.5-F	P1-F2-F	P1-F5-F	P1-H3.5-F	P1-H5-F
									Soil	Project	Sample ID:	P1-B2-F(28)	P1-B3.5(26)	P1-B5-F(25)	P1-C5-F (22)	P1-D3.5-F(25)	P1-D5-F(25)	P1-F3.5-F(20.5)	P1-F2-F (21)	P1-F5-F (20)	P1-H3.5-F (20)	
		Soil Ingestion	1		Soil Inhalation		Indo	or Air	Component	Remediation	Sample Date:	7/16/2009	7/16/2009	7/15/2009	7/23/2009	7/30/2009	7/30/2009	7/31/2009	9/9/2009	9/11/2009	9/10/2009	9/10/2009
Constituent	Residential	J		Residential	Commercial	Construction			to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	28'	26'	25'	22'	25'	25'	20.5'	21	20	20	20.5
Volatile Organic Compounds (mg/kg)													·	-		-	-			-	-	
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 (2)	6,100 (2)	2,100 (2)	2,100 (2)	2,100 (2)			3.4 (2)			< 0.846	< 0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1,1-Trichloroethane				1,200	1,200	1,200	560	560	2			<0.846	<0.145	< 0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 ⁽²⁾	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 ⁽²⁾			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1,2-Trichloro-1,2,2-trifluoroethane												<0.846	<0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1-Dichloro-2-propanone												<8.46	<1.45	<1.15	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130	110	670	23			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,1-Dichloropropene												<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2,3-Trichlorobenzene												<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 ⁽²⁾	730 (2)	730 ⁽²⁾			0.0001 (2)			<1.69	<0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
1,2,3-Trimethylbenzene												<0.846	<0.145	<0.115	3.9	1.9	<5.09	<6.29	<3.23	3.76	1.6	<5.0
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 ⁽²⁾	120 ⁽²⁾	0.25 (2)			18 ⁽²⁾			<0.846	<0.145	<0.115	10.2	5.29	<5.09	<1.7	1.40	10.80	4.6	1.1
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<0.846	<0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 (2)			10 (2)			<0.846	<0.145	<0.115	3.2	1.5	<5.09	<6.29	<3.23	3.3	1.4	<5.0
1,3-Dichlorobenzene	4 000 (2)	44 000 (2)	44 000 [7]	4 000 [7]	4 000 (2)	4 000 (7)						<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 (2)	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<0.846	<0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
1,4-Dichlorobenzene	2 400 (2)	(2)	44 000 (2)	11,000	17,000	340	1.3	9.8	2			<0.846	<0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	< 5.0
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 (2)	1,200 (2)	1,200 (2)	1,200 (2)			3.1 ⁽²⁾			<0.846	< 0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	< 5.0
2,2-Dichloropropane	47,000 ⁽²⁾	1.000.000 (2)	120.000 ⁽²⁾	25.000 ⁽²⁾	25,000 ⁽²⁾	710 ⁽²⁾			17 ⁽²⁾			<0.846	<0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
2-Butanone (methyl ethyl ketone)	,	, ,	.,	-,	1,400 ⁽²⁾	1,400 ⁽²⁾	23,000	23,000	4 ⁽²⁾			<8.46	0.39	0.28	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
2-Chlorotoluene (o-chlorotoluene)	1,600 (2)	41,000 (2)	41,000 (2)	1,400 (2)	,	1,400						<0.846 <8.46	<0.145 <1.45	< 0.115	<3.8 <38.3	<4.2 <42	<5.09 <50.9	<6.29 <62.9	<3.23 <32.3	<3.51 <35.1	<3.03 <30.3	<5.0 <50.0
2-Hexanone 2-Nitropropane												<8.46	<1.45	<1.15 <1.15	<38.3	<42 <42	<50.9	<62.9	<32.3	<35.1 <35.1	<30.3	<50.0 <50.0
4-Chlorotoluene												<0.46	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
4-Methyl-2-pentanone (MIBK)				3,100 ⁽²⁾	3,100 ⁽²⁾	340 ⁽²⁾						<8.46	<1.45	<1.15	<38.3	<4.2 <42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
Acetone	70,000			100.000	100,000	100,000	100,000	100,000	25	7,800		<8.46	<1.45	<1.15	27	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
Acrolein	39 ⁽²⁾	1,000 (2)	1.600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 ⁽²⁾	7,000		<16.9	<2.9	<2.3	<76.5	<84 <84	<102	<126	<64.6	<70.2	<60.6	<100
Acrylonitrile	1.2 ⁽²⁾	1,000	230 ⁽²⁾	0.10	0.54 ⁽²⁾	0.017			0.0006 (2)			<1.69	<0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Allyl chloride	1.2		200	0.20	0.04	0.17						<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Bromobenzene	1,600 (2)	41,000 (2)	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Bromochloromethane	1,000	41,000	41,000						L.L			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09 <5.09	<6.29	<3.23	<3.51	<3.03	<5.0 <5.0
Bromodichloromethane	10	92	2.000	3.000	3.000	3,000	1.400	1.400	0.6			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<1.69	<0.143	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			< 0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.000
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.000
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.000
Chloroethane												<1.69	<0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Chloroform	100	940	2.000	0.3	0.54	0.76	0.028	0.2	0.6			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.000

Concentration exceeds one or more project remediation objective.

Table 5-6 - Floor Ameren Champaign Soil Confirmation Samples - VOCs.xls Page 1 of 8

⁽¹⁾ Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objectives.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P1-B2-F	P1-B3.5	P1-B5-F	P1-C5-F	P1-D3.5-F	P1-D5-F	P1-F3.5-F	P1-F2-F	P1-F5-F	P1-H3.5-F	P1-H5-F
									Soil	Project	Sample ID:	P1-B2-F(28)	P1-B3.5(26)	P1-B5-F(25)	P1-C5-F (22)	P1-D3.5-F(25)	P1-D5-F(25)	P1-F3.5-F(20.5)	P1-F2-F (21)	P1-F5-F (20)	P1-H3.5-F (20)	P1-H5-F (20.5)
		Soil Ingestion	า		Soil Inhalation	l	Indoo	r Air	Component	Remediation	Sample Date:	7/16/2009	7/16/2009	7/15/2009	7/23/2009	7/30/2009	7/30/2009	7/31/2009	9/9/2009	9/11/2009	9/10/2009	9/10/2009
Constituent		•		Residentia	I Commercial	Construction	Residential	Commercial t		Objectives	Sample Depth (feet):	28'	26'	25'	22'	25'	25'	20.5'	21	20	20	20.5
Chloromethane (methyl chloride)												<1.69	<0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<0.677	<0.116	<0.0918	<3.1	<3.36	<4.07	<5.03	<2.58	<2.81	<2.42	<4.0
Cyclohexanone	390,000 ⁽²⁾	1,000,000 (2)	1,000,000 (2)	660 ⁽²⁾	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<16.9	<2.9	<2.3	<76.5	<84	<102	<126	<64.6	<70.2	<60.6	<100
Dibromochloromethane (chlorodibromomethane	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Dibromomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 (2)	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<1.69	< 0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Ethyl acetate	70,000 (2)	1,000,000 (2)	1,000,000 (2)	10,000 (2)	10,000 (2)	10,000 (2)			26 ⁽²⁾			<8.46	<0.145	<1.15	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
Ethyl ether	16,000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 (2)	8,800 (2)	8,800 (2)			6.1 (2)			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Ethyl methacrylate												<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Heptane												<3.39	< 0.579	< 0.459	2.7	<16.8	<20.4	<25.2	<12.9	<14.0	<12.1	<20.0
Hexachlorobutadiene												<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Hexachloroethane	78	2,000	2,000				160	160	0.5			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
lodomethane												<1.69	<0.29	< 0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Isopropylbenzene (cumene)	7,800 ⁽²⁾	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			<0.846	< 0.145	<0115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Methacrylonitrile												<8.46	<1.45	<1.15	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
Methyl Methacrylate												<0.846	< 0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Methyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.339	< 0.0579	< 0.0459	<1.5	<1.68	<2.04	<2.52	<1.29	<1.4	<1.21	<2.0
Methylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾	6,500 ⁽²⁾			0.89 (2)			<1.69	< 0.29	<0.23	<7.7	<8.4	<10.2	<12.6	<6.46	<7.02	<6.06	<10.0
Methylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		0.19	0.043	0.036	0.9	<4.2	<5.09	1.3	<3.23	<3.51	<3.03	<5.0
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		1.69	0.326	<0.23	186	<128	26.5	28.6	30.90	204	54.30	20.60
n-Butylbenzene												<0.846	<0.145	< 0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
n-Hexane				290 (2)	290 (2)	15 ⁽²⁾						<3.39	< 0.579	< 0.459	4.8	<16.8	<20.4	<25.2	<12.9	<14.0	<12.1	<20.0
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<16.9	<2.9	<2.3	<76.5	<84	<102	<126	<64.6	<70.2	<60.6	<100
n-Propylbenzene												< 0.846	< 0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	0.74	<3.03	<5.0
Pentachloroethane												<0.846	< 0.145	< 0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
p-Isopropyltoluene												< 0.846	< 0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Propionitrile												<8.46	<1.45	<0.115	<3.8	<42	<50.9	<6.29	<32.3	<35.1	<30.3	<50.0
sec-Butylbenzene												< 0.846	< 0.145	<0.115	<38.3	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Styrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		< 0.846	< 0.145	<0.115	1.9	3.6	< 5.09	<6.29	<3.23	4.63	<3.03	<5.0
tert-Butylbenzene												< 0.846	< 0.145	<0.115	<3.8	<4.2	< 5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Tetrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			< 0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Tetrahydrofuran												<8.46	<1.45	<1.15	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
trans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100	10	63	0.7			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
trans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			< 0.677	<0.116	< 0.0918	<3.1	<3.36	<4.07	<5.03	<2.58	<2.81	<2.42	<4.0
Trichloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Trichlorofluoromethane	23,000 (2)	610,000 ⁽²⁾	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 ⁽²⁾	31	190	34 ⁽²⁾			<0.846	<0.145	<0.115	<3.8	<4.2	<5.09	<6.29	<3.23	<3.51	<3.03	<5.0
Vinyl acetate	78,000	1,000,000	200,000	1.000	1,600	10	270	1,600	170 ⁽²⁾			<8.46	<1.45	<1.15	<38.3	<42	<50.9	<62.9	<32.3	<35.1	<30.3	<50.0
Vinyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<0.339	< 0.0579	<0.0459	<1.5	<1.68	<2.04	<2.52	<1.29	<1.400	<1.21	<2.0

Concentration exceeds one or more project remediation objectives.

Notes:

(1) Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P2-B2.5-F	P2-B4-F	P2-C4-F	P2-D2-F	P2-D4-F	P2-FG-3.5-F	P2-E2.5-F	P2-E4-F	P3-C2-F	P3-D2-F	P3-D2-F	P3-DE1.5-F
									Soil	Project	Sample ID:	P2-B2.5-F (22)	P2-B4-F (22)	P2-C4-F (22)	P2-D2-F (22)		P2-FG-3.5-F (24	, , ,	P2-E4-F (24)	P3-C2-F (24)	P3-D2-F (22)	P3-D2-F (24)	,
Complify and	D. M. et al.	Soil Ingestion		D. M. Maria	Soil Inhalation	•		oor Air	Component	Remediation	Sample Date:	10/27/2009	10/30/2009	10/30/2009	10/30/2009	10/30/2009	11/19/2009	11/25/2009	11/25/2009	1/26/2010	1/25/2010	1/26/2010	1/29/2010
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residentia	Commercia	to Groundwater(1)	Objectives	Sample Depth (feet):	22	22	22	22	22	24	24	24	24	22	24	23
Volatile Organic Compounds (mg/kg)	, , , , , , , , , , , , , , , , , , ,			(n)					en														
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	2,100 ⁽²⁾	2,100 (2)	2,100 (2)			3.4 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1,1-Trichloroethane				1,200	1,200	1,200	560	560	2			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 ⁽²⁾	12,000 ⁽²⁾	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
1,1,2-Trichloro-1,2,2-trifluoroethane												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1-Dichloro-2-propanone												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130	110	670	23			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,1-Dichloropropene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,2,3-Trichlorobenzene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 ⁽²⁾	730 ⁽²⁾	730 ⁽²⁾			0.0001 (2)			<4.27	<5.94	<3.72	<52.6	<89.8	< 0.219	<7.32	<8.83	< 0.724	<10.2	< 0.783	<15.8
1,2,3-Trimethylbenzene												<2.14	0.86	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	0.17	3	0.26	<7.88
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,2,4-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	73 (2)	120 ⁽²⁾	0.25 (2)			18 ⁽²⁾			5.36	2.1	2.05	13	55	0.067	<3.66	<4.42	0.526	10	0.878	<7.88
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.11	0.0073	0.054	0.002			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1,2-Dibromoethane (EDB)	0.32	2.9	62	0.06	0.12	0.16	0.022	0.16	0.0004			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
1.2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
1,2-Dichloroethane	7	63	1,400	0.4	0.7	0.99	0.066	0.48	0.02			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
1.2-Dichloropropane	9	84	1.800	15	23	0.5	0.023	0.17	0.03			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 ⁽²⁾	0.020	0.17	10 ⁽²⁾			1.4	<2.97	0.55	<26.3	15	<0.11	<3.66	<4.42	0.16	3.5	0.24	<7.88
1.3-Dichlorobenzene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 (2)	1.000 (2)	1.000 (2)	1,000 (2)			0.83 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
1.4-Dichlorobenzene	1,000	41,000	+1,000	11,000	17.000	340	1.3	9.8	2			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
1-Chlorobutane	3,100 ⁽²⁾	82.000 ⁽²⁾	14,000 (2)	1,200 ⁽²⁾	1.200 (2)	1,200 ⁽²⁾	1.5	3.0	3.1 ⁽²⁾			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
	5,100	02,000	14,000	1,200	1,200	1,200			J. I			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
2,2-Dichloropropane	47,000 ⁽²⁾	1.000.000 (2)	120.000 (2)	25,000 ⁽²⁾	25.000 ⁽²⁾	710 ⁽²⁾	23,000		17 ⁽²⁾			<21.4	<2.97 <29.7	<18.6	<26.3 <263	<44.9 <449		<36.6	<44.2	< 3.62		<3.91	<78.8
2-Butanone (methyl ethyl ketone)	,	, ,	,	,	.,		,	23,000	4 (2)								<1.1				<50.8		
2-Chlorotoluene (o-chlorotoluene)	1,600 (2)	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	< 5.08	< 0.391	<7.88
2-Hexanone												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
2-Nitropropane												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
4-Chlorotoluene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	<0.362	<5.08	<0.391	<7.88
4-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 (2)	340 ⁽²⁾						<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
Acrolein	39 (2)	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<42.7	<59.4	<37.2	<526	<898	<2.19	<73.2	<88.3	<7.24	<102	<7.83	<158
Acrylonitrile	1.2 (2)	11 ⁽²⁾	230 ⁽²⁾	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			<4.27	<5.94	<3.72	<52.6	<89.8	<0.219	<7.32	<8.83	<0.724	<10.2	< 0.783	<158
Allyl chloride												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<15.8
Bromobenzene	1,600 (2)	41,000 (2)	41,000 ⁽²⁾	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Bromochloromethane												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<4.27	<5.94	<3.72	<52.6	<89.8	< 0.219	<7.32	<8.83	< 0.724	<10.2	< 0.783	<15.8
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
Chloroethane												<4.27	< 5.94	<3.72	<52.6	<89.8	<0.219	<7.32	<8.83	< 0.724	<10.2	<0.783	<15.8
Chloroform	100	940	2.000	0.3	0.54	0.76	0.028	0.2	0.6			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	< 3.66	<4.42	< 0.362	<5.08	<0.391	<7.88

⁽¹⁾ Objectives are for Class I Groundwater.
(12) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Concentration exceeds one or more project remediation objectives.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P2-B2.5-F	P2-B4-F	P2-C4-F	P2-D2-F	P2-D4-F	P2-FG-3.5-F	P2-E2.5-F	P2-E4-F	P3-C2-F	P3-D2-F	P3-D2-F	P3-DE1.5-F
									Soil	Project	Sample ID:	P2-B2.5-F (22)	` '	P2-C4-F (22)	` ,	٠,	P2-FG-3.5-F (24)	` '	P2-E4-F (24)	P3-C2-F (24)	P3-D2-F (22)	P3-D2-F (24)	
		Soil Ingestion	ı		Soil Inhalation	n	Ind	oor Air	Component	Remediation	Sample Date:	10/27/2009	10/30/2009	10/30/2009	10/30/2009	10/30/2009	11/19/2009	11/25/2009	11/25/2009	1/26/2010	1/25/2010	1/26/2010	1/29/2010
Constituent	Residentia	l Commercial	Construction	Residentia	l Commercial	Construction	n Residentia	l Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	22	22	22	22	22	24	24	24	24	22	24	23
Chloromethane (methyl chloride)												<4.27	<5.94	<3.72	<52.6	<89.8	<0.219	<7.32	<8.83	<0.724	<10.2	<0.783	<15.8
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<1.71	<2.38	<1.49	<21	<35.9	<0.11	<3.66	<4.42	<0.289	<4.06	< 0.313	<7.88
Cyclohexanone	390,000 (2	1,000,000 (2)	1,000,000 (2	660 (2)	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<42.7	<59.4	<37.2	<526	<898	<2.19	<73.2	<88.3	<7.24	<102	<7.83	<158
Dibromochloromethane (chlorodibromomethane)	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Dibromomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 (2)	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<4.27	<5.94	<3.72	<52.6	<89.8	< 0.219	<7.32	<8.83	< 0.724	<10.2	< 0.783	<15.8
Ethyl acetate	70,000 (2)	1,000,000 (2,	1,000,000 (2) 10,000 ⁽²⁾	10,000 (2)	10,000 (2)			26 ⁽²⁾			<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
Ethyl ether	16,000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 (2)	8,800 (2)	8,800 (2)			6.1 (2)			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Ethyl methacrylate												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Heptane												<8.55	<11.9	<7.44	<105	<180	< 0.439	<14.6	<17.7	<1.45	<20.3	<1.57	<31.5
Hexachlorobutadiene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Hexachloroethane	78	2,000	2,000				160	160	0.5			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
lodomethane												<4.27	<5.94	<3.72	<52.6	<89.8	< 0.219	<7.32	<8.83	< 0.724	<10.2	< 0.783	<15.8
Isopropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 (2)	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			0.53	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	0.14	<7.88
Methacrylonitrile												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
Methyl Methacrylate												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Methyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.855	<1.19	< 0.744	<10.5	<18	< 0.0439	<1.46	<1.77	< 0.145	<2.03	< 0.157	<3.15
Methylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 ⁽²⁾	6,500 (2)	6,500 (2)			0.89 (2)			<4.27	<5.94	<3.72	<52.6	<89.8	< 0.219	<7.32	<8.83	< 0.724	<10.2	< 0.783	<15.8
Methylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		0.46	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		126	62.5	49.6	430	1560	14	12	83.5	9.5	249	26.1	4.5
n-Butylbenzene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
n-Hexane				290 (2)	290 (2)	15 ⁽²⁾						<8.55	<11.9	<7.44	<105	<180	< 0.439	<14.6	<17.7	<1.45	<20.3	<1.57	<31.5
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<42.7	<59.4	<37.2	<526	<898	<2.19	<73.2	<88.3	<7.24	<102	<7.83	<158
n-Propylbenzene												0.44	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Pentachloroethane												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
p-Isopropyltoluene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Propionitrile												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
sec-Butylbenzene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Styrene	16,000	410,000	41,000	1.500	1.500	430	230	230	4	230		<2.14	<2.97	3.36	<26.3	<44.9	2.04	8.4	2.7	< 0.362	5.28	< 0.391	<7.88
tert-Butylbenzene												<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	< 0.391	<7.88
Tetrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
Tetrahydrofuran												<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
trans-1.2-Dichloroethene	1,600	41.000	41,000	3.100	3,100	3,100	10	63	0.7			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
trans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<1.71	<2.38	<1.49	<21	<35.9	<0.11	<3.66	<4.42	<0.289	<4.06	<0.313	<7.88
Trichloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
Trichlorofluoromethane	23,000 (2)	610.000 ⁽²⁾	140.000 (2)	850 ⁽²⁾	1.400 ⁽²⁾	88 ⁽²⁾	31	190	34 ⁽²⁾			<2.14	<2.97	<1.86	<26.3	<44.9	<0.11	<3.66	<4.42	< 0.362	<5.08	<0.391	<7.88
Vinvl acetate	78,000	1.000.000	200,000	1.000	1.600	10	270	1,600	170 ⁽²⁾			<21.4	<29.7	<18.6	<263	<449	<1.1	<36.6	<44.2	<3.62	<50.8	<3.91	<78.8
Vinyl chloride	0.46	7.9	170	0.28	1,000	11	0.011	0.15	0.01			<0.855	<1.19	< 0.744	<10.5	<18	<0.0439	<1.46	<1.77	< 0.145	<2.03	<0.157	<3.15

Concentration exceeds one or more project remediation objectives.

⁽¹⁾ Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;-- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

		Soil Ingestion	n		Soil Inhalation	1	Indoo	or Air	Soil Component	Project Remediation	Sample Location: Sample ID: Sample Date:	P3-E3-F P3-E3-F (24) 1/28/2010	P3-F2-F P3-F2-F (23) 2/3/2010	P4-B2-F P4-B2-F (25) 4/7/2010	P4-B3-F P4-B3-F (25) 4/7/2010	P4-EF3-F P4-EF3-F (25) 4/12/2010	P4-G2-F P4-G2-F(26) 5/20/2010	P5-B2-F P5-B2-F(24) 7/16/2010	P5-B2-F P5-B2-F(26) 7/16/2010	P5-GH4-F P5-GH4-F(22) 8/27/2010	P5-G2.5-F P5-G2.5-F (22) 9/3/2010	P6-B4.5-F P6-B4.5-F (25) 10/15/2010
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	24	23	25	25	25	26	24	26	22	22	25
Volatile Organic Compounds (mg/kg)																						
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 (2)	6,100 ⁽²⁾	2,100 (2)	2.100 (2)	2,100 (2)			3.4 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.1.1-Trichloroethane				1,200	1,200	1,200	560	560	2			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.1.2.2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,1,2-Trichloro-1,2,2-trifluoroethane												<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.1.2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,1-Dichloro-2-propanone									0.02			<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130	110	670	23			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.1-Dichloroethene	3.900	100.000	470	290	10.000	3	13	77	0.06			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,1-Dichloropropene												<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.2.3-Trichlorobenzene												<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1.2.3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 ⁽²⁾	730 ⁽²⁾	730 ⁽²⁾			0.0001 (2)			<8.61	<6.59	<81.8	<3.28	<0.44	<0.473	<15.8	<4.15	<0.275	<0.238	<0.100
1,2,3-Trichloropioparie	0.032	0.02			750				0.0001			3.2	1.8	10	0.67	0.082	0.09	<7.92	<2.08	<0.137	<0.119	0.488
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	< 0.106
1,2,4-Trimethylbenzene	3.900 ⁽²⁾	100.000 (2)	100.000 (2)	73 ⁽²⁾	120 ⁽²⁾	0.25 (2)			18 ⁽²⁾			2.2	1.4	<40.9	0.5	0.054	0.052	<7.92	<2.08	<0.137	<0.119	1.33
1.2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.23	0.0073	0.054	0.002			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,2-Dibromoethane (EDB)	0.40	2.9	62	0.06	0.12	0.11	0.0073	0.054	0.002			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,2-Dichloroethane	7,000	63	1.400	0.4	0.7	0.99	0.066	0.48	0.02			<4.31	<3.3	<40.9 <40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
,	9	84	1,400	0. 4 15	23			0.46	0.02				<3.3	<40.9 <40.9	<1.64		<0.237	<7.92 <7.92	<2.08			<0.106
1,2-Dichloropropane	3,900 ⁽²⁾	100,000 ⁽²⁾	1,800	45 ⁽²⁾	23 72 ⁽²⁾	0.5 0.15 ⁽²⁾	0.023	0.17	0.03 10 ⁽²⁾			<4.31				< 0.22				<0.137	<0.119	
1,3,5-Trimethylbenzene	3,900	100,000	100,000	45 1	· -				• •			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	0.385
1,3-Dichlorobenzene	4 000 (2)	44 000 (2)	44 000 (2)	1.000 (2)	4 000 (2)	1.000 (2)			0.00(2)			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,3-Dichloropropane	1,600 (2)	41,000 ⁽²⁾	41,000 (2)	,	1,000 (2)	,	4.0		0.83 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1,4-Dichlorobenzene	2 400 (2)	(2)	44 000 (2)	11,000	17,000	340	1.3	9.8	2			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 (2)	1,200 (2)	1,200 (2)	1,200 (2)			3.1 ⁽²⁾			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
2,2-Dichloropropane	47.000 (2)	4 000 000 [7		 05 000 (2)	(Z)	 740 (2)			 47 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
2-Butanone (methyl ethyl ketone)	47,000 ⁽²⁾	1,000,000 (2	,	25,000 ⁽²⁾	25,000 ⁽²⁾	710 ⁽²⁾	23,000	23,000	17 ⁽²⁾			<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
2-Chlorotoluene (o-chlorotoluene)	1,600 ⁽²⁾	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 ⁽²⁾			4 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106
2-Hexanone												<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
2-Nitropropane												<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
4-Chlorotoluene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
4-Methyl-2-pentanone (MIBK)				3,100 ⁽²⁾	3,100 ⁽²⁾	340 ⁽²⁾						<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<2.08	<1.37	<1.19	<1.06
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	0.28	<1.19	0.22
Acrolein	39 ⁽²⁾	1,000 (2)	1,600 (2)	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<86.1	<65.9	<818	<32.8	<4.4	<4.73	<158	<41.5	<2.75	<2.38	<2.11
Acrylonitrile	1.2 (2)	11 ⁽²⁾	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			<8.61	<65.9	<818	<3.28	<0.44	<4.73	<158	<41.5	<.275	<.238	<0.211
Allyl chloride												<4.31	<6.59	<40.9	<1.64	<0.22	< 0.473	<15.8	<41.5	<0.137	<0.119	<0.106
Bromobenzene	1,600 (2)	41,000 (2)	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
Bromochloromethane												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	< 0.106
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	<0.137	<0.119	<0.106
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<8.61	<6.59	<81.8	<3.28	< 0.44	< 0.473	<15.8	<4.15	<0.275	<0.238	<0.211
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	<0.119	< 0.106
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			<4.31	<3.3	<40.9	<1.64	< 0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Chloroethane												<8.61	<6.59	<81.8	<3.28	< 0.44	< 0.473	<15.8	<4.15	< 0.275	<0.238	<0.211
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			<4.31	<3.3	<40.9	<1.64	<0.22	<0.237	<7.92	<2.08	<0.137	<0.119	<0.106

Table 5-6 - Floor Ameren Champaign Soil Confirmation Samples - VOCs.xls Page 5 of 8

Notes:

(1) Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Concentration exceeds one or more project remediation objectives.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P3-E3-F	P3-F2-F	P4-B2-F	P4-B3-F	P4-EF3-F	P4-G2-F	P5-B2-F	P5-B2-F	P5-GH4-F	P5-G2.5-F	P6-B4.5-F
									Soil	Project	Sample ID:	P3-E3-F (24)	P3-F2-F (23)	P4-B2-F (25)	P4-B3-F (25)	P4-EF3-F (25)	P4-G2-F(26)	P5-B2-F(24)	P5-B2-F(26)	P5-GH4-F(22)	P5-G2.5-F (22)	P6-B4.5-F (25)
		Soil Ingestion	n		Soil Inhalation	1	Inde	oor Air	Component	Remediation	Sample Date:	1/28/2010	2/3/2010	4/7/2010	4/7/2010	4/12/2010	5/20/2010	7/16/2010	7/16/2010	8/27/2010	9/3/2010	10/15/2010
Constituent	Residentia	Commercial	Construction	Residentia	l Commercial	Constructio	n Residential	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	24	23	25	25	25	26	24	26	22	22	25
Chloromethane (methyl chloride)												<8.61	<6.59	<81.8	<3.28	<0.44	< 0.473	<15.8	<4.15	<0.275	<0.238	<0.211
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Cyclohexanone	390,000 (2)	1,000,000 (2	1,000,000 (2)	660 ⁽²⁾	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<86.1	<65.9	<818	<32.8	<4.4	<4.73	<158	<41.5	<2.75	<2.38	<0.211
Dibromochloromethane (chlorodibromomethane	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Dibromomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 (2)	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			<8.61	<6.59	<81.8	<3.28	< 0.44	< 0.473	<15.8	<4.15	< 0.275	<0.238	< 0.211
Ethyl acetate	70,000 (2)	1,000,000 (2	1,000,000 (2)	10,000 (2)	10,000 (2)	10,000 (2)			26 ⁽²⁾			<43.1	<33	<409	<16.4	1.1	1.1	<79.2	<20.8	0.83	700	0.73
Ethyl ether	16,000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 (2)	8,800 (2)	8,800 (2)			6.1 ⁽²⁾			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	<0.119	<0.106
Ethyl methacrylate												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Heptane												<17.2	<13.2	<164	<6.56	< 0.879	< 0.947	<31.7	<8.31	< 0.549	< 0.476	< 0.422
Hexachlorobutadiene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Hexachloroethane	78	2,000	2,000				160	160	0.5			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
lodomethane												<8.61	<6.59	<81.8	<3.28	< 0.44	< 0.473	<15.8	<4.15	< 0.275	< 0.238	<0.211
Isopropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	0.021
Methacrylonitrile												<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
Methyl Methacrylate												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Methyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			<1.72	<1.32	<16.4	< 0.656	< 0.0879	< 0.0947	<3.17	< 0.831	< 0.0549	<.0476	< 0.0422
Methylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 (2)	6,500 ⁽²⁾	6,500 (2)			0.89 (2)			<8.61	<6.59	<81.8	<3.28	< 0.44	< 0.473	<15.8	<4.15	< 0.275	<0.238	< 0.211
Methylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		<4.31	0.67	<40.9	<1.64	<0.22	< 0.237	1.9	0.53	0.048	<0.119	< 0.106
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		405	116	99.2	38.1	6.38	9.01	<15.8	<4.15	<0.275	<0.238	28.3
n-Butylbenzene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	<0.106
n-Hexane				290 (2)	290 (2)	15 ⁽²⁾						<17.2	<13.2	<164	<6.56	< 0.879	< 0.947	<31.7	<8.31	< 0.549	< 0.476	< 0.422
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<86.1	<65.9	<818	<32.8	<4.4	<4.73	<158	<41.5	<2.75	<2.38	<2.11
n-Propylbenzene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	0.095
Pentachloroethane												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
p-lsopropyltoluene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Propionitrile												<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
sec-Butylbenzene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Styrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		8.22	5.81	<40.9	3.07	<0.22	0.048	<7.92	<2.08	< 0.137	< 0.119	1.46
tert-Butylbenzene												<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Tetrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Tetrahydrofuran												<43.1	<33	<409	<16.4	<2.2	< 0.237	<79.2	<20.8	<1.37	<1.19	<1.06
trans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100	10	63	0.7			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
trans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Trichloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<4.31	<3.3	<40.9	<1.64	<0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Trichlorofluoromethane	23,000 (2)	610,000 (2)	140,000 ⁽²⁾	850 ⁽²⁾	1,400 ⁽²⁾	88 (2)	31	190	34 ⁽²⁾			<4.31	<3.3	<40.9	<1.64	< 0.22	< 0.237	<7.92	<2.08	< 0.137	< 0.119	< 0.106
Vinyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<43.1	<33	<409	<16.4	<2.2	<2.37	<79.2	<20.8	<1.37	<1.19	<1.06
Vinyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<1.72	<1.32	<16.4	< 0.656	< 0.0879	< 0.0947	<3.17	< 0.831	< 0.0549	< 0.0476	< 0.0422

Concentration exceeds one or more project remediation objectives.

Notes:

(1) Objectives are for Class I Groundwater. (2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

		Soil Ingestion			Soil Inhalation	ı	Indo	or Air	Soil Component	Project Remediation	Sample Location: Sample ID: Sample Date:	P9-G1.5-F P9-G1.5-F (14) 5/13/2011	P9-DE1.5-F P9-DE1.5-F (16) 6/1/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	14	16
Volatile Organic Compounds (mg/kg)										•	, ,		
1,1,1,2-Tetrachloroethane	2,300 (2)	61,000 (2)	6,100 ⁽²⁾	2,100 (2)	2,100 (2)	2,100 (2)			3.4 (2)			< 0.103	< 0.371
1,1,1-Trichloroethane				1,200	1,200	1,200	560	560	2			< 0.103	< 0.371
1,1,2,2-Tetrachloroethane	4,700 (2)	120,000 ⁽²⁾	12,000 ⁽²⁾	2,000 (2)	2,000 (2)	2,000 (2)			3.3 (2)			< 0.103	< 0.371
1,1,2-Trichloro-1,2,2-trifluoroethane												< 0.103	< 0.371
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			< 0.103	< 0.371
1,1-Dichloro-2-propanone									0.02			<1.03	<3.71
1.1-Dichloroethane	7.800	200.000	200.000	1.300	1.700	130	110	670	23			<0.103	<0.371
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			<0.103	<0.371
1,1-Dichloropropene												<0.103	<0.371
1,2,3-Trichlorobenzene												<0.103	<0.371
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 ⁽²⁾			0.0001 (2)			< 0.207	< 0.743
1,2,3-Trimethylbenzene												0.384	0.33
1,2,4-Trichlorobenzene	780	20.000	2,000	3,200	3,200	920	220	980	5			< 0.103	<0.371
1,2,4-Trimethylbenzene	3,900 ⁽²⁾	100,000 (2)	100,000 (2)	73 ⁽²⁾	120 ⁽²⁾	0.25 ⁽²⁾			18 ⁽²⁾			0.179	0.434
1,2-Dibromo-3-chloropropane	0.46	4	89	11	17	0.23	0.0073	0.054	0.002			<0.103	<0.371
	0.40	2.9	62	0.06	0.12	0.11	0.0073	0.034	0.002			<0.103	<0.371
1,2-Dibromoethane (EDB)			18,000	560	560		200	200	0.0004 17				<0.371
1,2-Dichlorobenzene	7,000 7	180,000 63	1.400	0.4		310 0.99	0.066	0.48	0.02			<0.103 <0.103	<0.371
1,2-Dichloroethane			,		0.7				***-				
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			<0.103	< 0.371
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100,000 (2)	45 ⁽²⁾	72 ⁽²⁾	0.15 (2)			10 (2)			<0.103	<0.371
1,3-Dichlorobenzene	(2)	(2)	(7)	(7)	(2)							<0.103	<0.371
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 ⁽²⁾	1,000 (2)	1,000 (2)	1,000 (2)			0.83 (2)			<0.103	<0.371
1,4-Dichlorobenzene	(2)	(2)	(2)	11,000	17,000	340	1.3	9.8	2			<0.103	<0.371
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 (2)	1,200 (2)	1,200 (2)	1,200 (2)			3.1 (2)			<0.103	<0.371
2,2-Dichloropropane				(2)								<0.103	<0.371
2-Butanone (methyl ethyl ketone)	47,000 (2)	1,000,000 (2)	120,000 (2)	25,000 ⁽²⁾	25,000 ⁽²⁾	710 (2)	23,000	23,000	17 (2)			<1.03	<3.71
2-Chlorotoluene (o-chlorotoluene)	1,600 (2)	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4 (2)			<0.103	< 0.371
2-Hexanone												<1.03	<3.71
2-Nitropropane												<1.03	<3.71
4-Chlorotoluene												< 0.103	< 0.371
4-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 (2)	340 ⁽²⁾						<1.03	<3.71
Acetone	70,000			100,000	100,000	100,000	100,000	100,000	25	7,800		<1.03	<3.71
Acrolein	39 ⁽²⁾	1,000 (2)	1,600 ⁽²⁾	0.16 (2)	0.26 (2)	0.017 (2)			0.014 (2)			<2.07	<7.43
Acrylonitrile	1.2 (2)	11 ⁽²⁾	230 (2)	0.28 (2)	0.54 (2)	0.17 (2)			0.0006 (2)			< 0.207	< 0.743
Allyl chloride												< 0.103	< 0.371
Bromobenzene	1,600 (2)	41,000 ⁽²⁾	41,000 (2)	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			< 0.103	< 0.371
Bromochloromethane												< 0.103	< 0.371
Bromodichloromethane	10	92	2.000	3.000	3.000	3.000	1.400	1.400	0.6			< 0.103	< 0.371
Bromoform	81	720	16,000	53	100	140	49	360	0.8			<0.103	<0.371
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			<0.207	<0.743
Carbon disulfide	7,800	200.000	20.000	720	720	9	38	230	32			< 0.103	<0.371
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			< 0.103	< 0.371
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			<0.103	<0.371
Chloroethane	1,000	41,000	4,100		210	1.5						<0.103	<0.743
Chloroform	100	940	2.000	0.3	0.54	0.76	0.028	0.2	0.6			<0.103	<0.743

Notes:

(1) Objectives are for Class I Groundwater.
(2) Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Concentration exceeds one or more project remediation objectives.

Table 5-6 Soil Confirmation Sample Analytical Results For Excavation Floor - VOCs Champaign Former MGP Ameren Illinois

Constituent	Residential	Soil Ingestion		Docidontial	Soil Inhalation			or Air	Soil Component to Groundwater ⁽¹⁾	Project Remediation Objectives	Sample Location: Sample ID: Sample Date: Sample Depth (feet):	P9-G1.5-F P9-G1.5-F (14) 5/13/2011 14	P9-DE1.5-F P9-DE1.5-F (16 6/1/2011 16
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater	Objectives	Sample Depth (leet).	14	10
Chloromethane (methyl chloride)												< 0.207	< 0.743
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			< 0.103	< 0.371
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<0.0828	< 0.297
Cyclohexanone	390,000 (2)	1,000,000 (2)	1,000,000 (2)	660 ⁽²⁾	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<2.07	<7.43
Dibromochloromethane (chlorodibromomethane)	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			< 0.103	< 0.371
Dibromomethane (methylene bromide)	780 ⁽²⁾	20,000 (2)	20,000 (2)	2,700 (2)	2,700 (2)	2,700 (2)			0.34 (2)			< 0.103	< 0.371
Dichlorodifluoromethane	16,000 ⁽²⁾	410,000 (2)	180,000 ⁽²⁾	190 ⁽²⁾	310 ⁽²⁾	20 (2)	6.8	4.2	43 (2)			< 0.207	< 0.743
Ethyl acetate	70,000 ⁽²⁾			10,000 (2)	10,000 (2)	10,000 (2)			26 ⁽²⁾			<1.03	<3.71
Ethyl ether	16,000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 (2)	8,800 (2)	8,800 (2)			6.1 ⁽²⁾			< 0.103	< 0.371
Ethyl methacrylate												< 0.103	< 0.371
Heptane												< 0.414	<1.49
Hexachlorobutadiene												< 0.103	< 0.371
Hexachloroethane	78	2,000	2,000				160	160	0.5			< 0.103	< 0.371
odomethane												< 0.207	< 0.743
sopropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 ⁽²⁾	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 ⁽²⁾			< 0.103	< 0.371
Methacrylonitrile												<1.03	<3.71
Methyl Methacrylate												< 0.103	< 0.371
Methyl tert-butyl ether	780	20,000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.0414	< 0.149
Methylacrylate	2,300 (2)	61,000 ⁽²⁾	6,100 ⁽²⁾	6,500 (2)	6,500 ⁽²⁾	6,500 (2)			0.89 (2)			< 0.207	< 0.743
Methylene chloride (dichloromethane)	85	760	12,000	13	24	34	1.4	10	0.02	1.4		< 0.103	< 0.371
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	1.8		3.89	5.24
n-Butylbenzene												< 0.103	< 0.371
n-Hexane				290 (2)	290 ⁽²⁾	15 ⁽²⁾						< 0.414	<1.49
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<2.07	<7.43
n-Propylbenzene												< 0.103	< 0.371
Pentachloroethane												< 0.103	< 0.371
o-Isopropyltoluene												< 0.103	< 0.371
Propionitrile												<1.03	<3.71
sec-Butylbenzene												< 0.103	< 0.371
Styrene	16,000	410,000	41,000	1,500	1,500	430	230	230	4	230		< 0.103	< 0.371
ert-Butylbenzene												< 0.103	< 0.371
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			< 0.103	< 0.371
Fetrahydrofuran												<1.03	<3.71
rans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100	10	63	0.7			< 0.103	< 0.371
rans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			< 0.0828	< 0.297
richloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<0.103	<0.371
Trichlorofluoromethane	23,000 ⁽²⁾	610,000 ⁽²⁾	140,000 (2)	850 ⁽²⁾	1,400 ⁽²⁾	88 ⁽²⁾	31	190	34 ⁽²⁾			<0.103	<0.371
/inyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<1.03	<3.71
/inyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<0.0414	<0.149

Notes:

(1) Objectives are for Class I Groundwater.

⁽²⁾ Non-TACO or provisional ROs provided by the IEPA.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Concentration exceeds one or more project remediation objectives.

Table 5-7 Soil Confirmation Sample Analytical Results For Excavation Floor - SVOCs Champaign Former MGP Ameren Illinois

											Sample Location:	P1-D3.5-F	P1-D5-F	P1-F3.5-F	P1-H5-F	P2-B4-F	P2-C4-F	P2-D2-F	P2-D4-F	P2-E2.5-F	P3-C2-F	P3-C3-F	P3-C3-F	P3-D2-F	P3-DE1.5-F	P3-DE1-F	P3-E3-F
									Soil	Project	Sample ID:	P1-D3.5-F(25)	P1-D5-F(25)	P1-F3.5-F(20.5)	P1-H5-F (20.5	, ,	P2-C4-F (22)	P2-D2-F (22)	P2-D4-F (22)	P2-E2.5-F (24)	P3-C2-F (24)	P3-C3-F (22)	P3-C3-F (24)	, ,	P3-DE1.5-F (23)	٠,	,
Constituent	Posidential	Soil Ingestion	Construction		Soil Inhalation			oor Air Commercial to	Component Croundwater ⁽¹⁾	Remediation	Sample Date: mple Depth (feet):	7/30/2009 25'	7/30/2009 25'	7/31/2009 20.5'	9/10/2009 20.5	10/30/2009 22	10/30/2009 22	10/30/2009 22	10/30/2009 22	11/25/2009 24	1/26/2010 24	1/25/2010 22	1/26/2010 24	1/25/2010 22	1/29/2010 23	1/29/2010 23	1/28/2010 24
emivolatile Organic Compounds (mg/kg)		Commercial	CONSTRUCTION	1 Nesideriliai	Commercial	Construction	Nesideriliai	Commercial to	Giouriawater	Objectives 3ai	inple Depth (leet).	23	20	20.5	20.5	22	22	22	22	24	24	22	24	22	20	20	
2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<5.61	<0.558	<11.6	<0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<5.61	<0.558	<11.6	<0.559	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
2-Diphenylhydrazine												<9.43	< 0.937	<19.5	<0.94	< 0.94	<4.88	<9.77	<9.45	<4.63	<9.41	<9.33	< 0.917	<9.42	<18	<17.5	<9.25
,3-Dichlorobenzene												<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
,4-Dichlorobenzene				11,000	17,000	340	1.3	9.8	2			<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
,4,5-Trichlorophenol	7,800	200,000	200,000						130			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	< 0.382	<3.92	<7.51	<7.31	<3.86
,4,6-Trichlorophenol	58	520	11,000	200	390	540			0.09			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	< 0.382	<3.92	<7.51	<7.31	<3.86
,4-Dichlorophenol	230	6,100	610						0.86			<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
4-Dimethylphenol	1,600	41,000	41,000						9			<5.61	<0.558	<11.6	< 0.559	0.21	<2.91	1.8	2.5	<2.76	<5.6	3.1	<0.546	2.5	<10.7	5.3	<5.51
,4-Dinitrophenol	160	4,100	410						0.2			<11.2	<1.12	<23.2	<1.12	<1.12	<5.81	<11.6	<11.3	<5.51	<11.2	<11.1	<1.09	<11.2	<21.5	<20.9	<11
,4-Dinitrotoluene	0.9	8.4	180						0.0008			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
,6-Dinitrotoluene	0.9	8.4	180						0.0007			<3.93	<0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
-Chloronaphthalene (beta-chloronaphthalene		160,000 (2)	160,000 (2)						49 ⁽²⁾			<3.93	<0.39	<8.12	<0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	49,000	49,000	4			<5.61	<0.558	<11.6	<0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Methoxy-4-methylphenol			(7)						- (7)			<7.29	<0.725	<15.1	<0.727	<0.728	<3.78	<7.56	<7.31	<3.58	<7.28	<7.22	<0.709	<7.29	<14	<13.6	<7.16
-Methylnaphthalene	310 (2)	8,200 (2)	820 (2)	(2)	(2)	(2)	83	83	7.2 (2)	83		7.46	0.446	54.5	10.9	0.749	14.9	40.5	92.3	<1.93	<3.92	<3.89	<0.382	16.9	<7.51	<7.31	36
-Nitroaniline	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	35 ⁽²⁾	56 (2)	3.6 ⁽²⁾			0.14 (2)			<11.2	<1.12	<23.2	<1.12	<1.12	<5.81	<11.6	<11.3	<5.51	<11.2	<11.1	<1.09	<11.2	<21.5	<20.9	<11
-Nitrophenol												<3.93	<0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
,3´-Dichlorobenzidine	1	13	280	(2)	400 (2)				0.007			<3.93	<0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
3-Nitroaniline	23 (2)	610 (2)	61 ⁽²⁾	250 ⁽²⁾	400 (2)	26 (2)			0.01 (2)			<11.2	<1.12	23.2	<1.12	<1.12	<5.81	<11.6	<11.3	<5.51	<11.2	<11.1	<1.09	<11.2	<21.5	<20.9	<11
,6-Dinitro-2-methylphenol	7.8	200	820						0.0031			<11.2	<1.12	23.2	<1.12	<1.12	<5.81	<11.6	<11.3	<5.51	<11.2	<11.1	<1.09	<11.2	<21.5	<20.9	<11
-Bromophenyl phenyl ether												<3.93	< 0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
-Chloro-3-methylphenol												<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Chloroaniline (p-chloroaniline)	310	8,200	820						0.7			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	4.8	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Chlorophenyl phenyl ether	230 (2)	C 400 (2)	610 ⁽²⁾	1,000 (2)	4 000 (2)	110 (2)			0.1 (2)			<3.93	< 0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
-Nitroaniline (p-nitroaniline)	630 ⁽²⁾	6,100 ⁽²⁾		1,000	1,600 (2)	110 17			·			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Nitrophenol	110 ⁽²⁾	16,000 ⁽²⁾ 1,000 ⁽²⁾	16,000 ⁽²⁾ 1,400 ⁽²⁾	01 (2)	130 (2)	8.4 (2)			0.24 ⁽²⁾ 0.063 ⁽²⁾			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92 <5.6	<3.89	<0.382	<3.92 <5.61	<7.51	<7.31	<3.86
niline Izobenzene	110	1,000	1,400	01	130	0.4			0.003			<5.61 <3.93	<0.558 <0.39	<11.6 <8.12	<0.559 <0.392	<0.56 <0.392	<2.91 <2.03	<5.82 <4.07	<5.63 <3.94	<2.76 <1.93	<3.92	<5.56 <3.89	<0.546 <0.382	<3.92	<10.7 <7.51	<10.4 <7.31	<5.51 <3.86
	0.003 (2)	0.02 (2)	0.54 (2)	0.009 (2)	0.02 (2)	0.02 (2)			0.0000022			<11.9	<1.18	24.5	<1.18	<1.18	<6.14	<12.3	<11.9		<11.8	<11.7	<1.15	<11.8	<22.7	<22.1	<11.6
Benzidine Benzoic acid	310,000	1,000,000	820,000	0.003	0.02	0.02			400			<16.8	<1.67	34.8	<1.68	<1.68	<8.72	<17.5	<16.9	<8.27	<16.8	<16.7	<1.13	<16.8	<32.2	<31.3	<16.5
Benzyl alcohol	39,000 ⁽²⁾	1,000,000	200.000 (2)	6.100 ⁽²⁾	6.100 ⁽²⁾	6 100 ⁽²⁾			15 ⁽²⁾			<5.61	<0.558	<11.6	<0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
Bis(2-chloroethoxy)methane		1,000,000	200,000	0,100	0,100	0,100						<3.93	<0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
Bis(2-chloroethyl)ether	0.6	5	75	0.2	0.47	0.66	0.5	3.7	0.0004			<5.61	<0.558	<11.6	< 0.552	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
Bis(2-chloroisopropyl)ether	3,100 ⁽²⁾	82,000 ⁽²⁾	8,200 (2)	1.300 (2)	1,300 (2)	1,300 ⁽²⁾			2.4 (2)			<3.93	<0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
Butyl benzyl phthalate	16,000	410,000	410,000	930	930	930			930			<3.93	<0.39	<8.12	< 0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	< 0.382	<3.92	<7.51	<7.31	<3.86
Carbazole	32	290	6,200						0.6			<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	2.2	2.8	<2.76	<5.6	<5.56	< 0.546	3.5	<10.7	<10.4	<5.51
Dibenzofuran	160 ⁽²⁾	4,100 ⁽²⁾	4.100 ⁽²⁾						6.1 ⁽²⁾	310		<3.93	<0.39	<8.12	0.41	<0.392	1.1	5.06	8.5	<1.93	<3.92	<3.89	<0.382	6.98	<7.51	<7.31	2.1
Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000			470			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
limethyl phthalate												<3.93	<0.39	<8.12	<0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
i-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300			2,300			<3.93	<0.39	<8.12	< 0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
i-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000			10,000			<3.93	<0.39	<8.12	< 0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
lexachlorobenzene	0.4	4	78	1	1.8	2.6	0.25	0.25	2			<3.93	<0.39	<8.12	< 0.392	<0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
lexachlorobutadiene												<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	< 5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
lexachlorocyclopentadiene	550	14,000	14,000	10	16	1.1	5	30	400			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	< 0.382	<3.92	<7.51	<7.31	<3.86
lexachloroethane	78	2,000	2,000				160	160	0.5			<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
sophorone	15,600	410,000	410,000	4,600	4,600	4,600	1,800	1,800	8			<3.93	< 0.39	<8.12	< 0.392	< 0.392	<2.03	<4.07	<3.94	<1.93	<3.92	<3.89	<0.382	<3.92	<7.51	<7.31	<3.86
,p-Cresol	390 ⁽³⁾	10,000 (3)	1,000 (3)	8,100 (4)	8,100 (4)	8,100 (4)			0.2 (3)			<5.61	<0.558	<11.6	< 0.559	1.02	<2.91	5.87	3.9	2.91	3.2	5.72	2.47	<5.61	6	6.7	<5.51
litrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
l-Nitrosodimethylamine	0.013 (2)	0.11 ⁽²⁾	1.6 ⁽²⁾	0.012 (2)	0.023 (2)	0.032 (2)		(0.0000067 (2)			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Nitroso-di-n-propylamine	0.09	0.8	18						0.00005			<5.61	<0.558	<11.6	< 0.559	<0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	<0.546	<5.61	<10.7	<10.4	<5.51
-Nitrosodiphenylamine	130	1,200	25,000						1			<5.61	<0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	<5.63	<2.76	<5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51
Cresol	3,900	100,000	100,000				4,800	4,800	15			<5.61	<0.558	<11.6	< 0.559	0.798	<2.91	2.4	2	1.3	<5.6	3.6	2.23	<5.61	3.8	3.9	<5.51
entachlorophenol	3	24	520						0.03			<22.4	2.23	<46.4	<2.24	<2.24	<11.6	<23.3	<22.5	<11	<22.4	<22.2	<2.18	<22.4	<42.9	<41.8	<22
Phenol	23,000	610,000 2,000 (2)	61,000				12,000	12,000	100			<3.93	< 0.39	<8.12	< 0.392	0.36	<2.03	6.04	2.6	0.67	<3.92	<3.89	0.19	<3.92	<7.51	<7.31	<3.86
	78 (2)		2,000 (2)	200,000 (2)	200,000 (2)				0.032 (2)			<5.61	< 0.558	<11.6	< 0.559	< 0.56	<2.91	<5.82	< 5.63	<2.76	< 5.6	<5.56	< 0.546	<5.61	<10.7	<10.4	<5.51

Objectives are for Class I Groundwater.
 Non-TACO or provisional ROs provided by the IEPA.
 Objective is for p-cresol.
 Objective is for m-cresol.

^{&#}x27;-- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-7 Soil Confirmation Sample Analytical Results For Excavation Floor - SVOCs Champaign Former MGP Ameren Illinois

		Sail Ingestion			Soil Inhalation		امطا	oor Air	Soil	Project	Sample Location: Sample ID: Sample Date:	P3-F2-F P3-F2-F (23) 2/3/2010	P4-B3-F P4-B3-F (25) 4/7/2010
Constituent	Residential	Soil Ingestion Commercial	Construction	Residential		Construction			Component to Groundwater ⁽¹⁾	Remediation Objectives	Sample Depth (feet):	2/3/2010	25
Semivolatile Organic Compounds (mg/kg)										o o journo			
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5			<1.68	<2.77
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<1.68	<2.77
1,2-Diphenylhydrazine												<2.81	<4.66
1,3-Dichlorobenzene												<1.68	<2.77
1,4-Dichlorobenzene				11,000	17,000	340	1.3	9.8	2			<1.68	<2.77
2,4,5-Trichlorophenol	7,800	200,000	200,000						130			<1.17	<1.94
2,4,6-Trichlorophenol	58	520	11,000	200	390	540			0.09			<1.17	<1.94
2,4-Dichlorophenol	230	6,100	610						0.86			<1.68	<2.77
2,4-Dimethylphenol	1,600	41,000	41,000						9			0.73	<2.77
2,4-Dinitrophenol	160	4,100	410						0.2			<3.35	<5.55
2,4-Dinitrotoluene	0.9	8.4	180						0.0008			<1.17	<1.94
2,6-Dinitrotoluene	0.9	8.4	180						0.0007			<1.17	<1.94
2-Chloronaphthalene (beta-chloronaphthalene	6,300 (2)	160,000 ⁽²⁾	160,000 ⁽²⁾						49 (2)			<1.17	<1.94
2-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	49,000	49,000	4			<1.68	<2.77
2-Methoxy-4-methylphenol												<2.18	<3.61
2-Methylnaphthalene	310 (2)	8,200 (2)	820 (2)				83	83	7.2 (2)	83		16.4	11.3
2-Nitroaniline	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	35 ⁽²⁾	56 ⁽²⁾	3.6 (2)			0.14 (2)			<3.35	<5.55
2-Nitrophenol												<1.17	<1.94
3,3'-Dichlorobenzidine	1	13	280						0.007			<1.17	<1.94
3-Nitroaniline	23 (2)	610 ⁽²⁾	61 ⁽²⁾	250 (2)	400 (2)	26 (2)			0.01 (2)			<3.35	<5.55
4,6-Dinitro-2-methylphenol	7.8	200	820						0.0031			<3.35	<5.55
4-Bromophenyl phenyl ether												<1.17	<1.94
4-Chloro-3-methylphenol												<1.68	<2.77
4-Chloroaniline (p-chloroaniline)	310	8,200	820						0.7			<1.68	<2.77
4-Chlorophenyl phenyl ether		(2)		(2)	(7)							<1.17	<1.94
4-Nitroaniline (p-nitroaniline)	230 (2)	6,100 ⁽²⁾	610 (2)	1,000 (2)	1,600 (2)	110 ⁽²⁾			0.1 (2)			<1.68	<2.77
4-Nitrophenol	630 ⁽²⁾ 110 ⁽²⁾	16,000 ⁽²⁾	16,000 ⁽²⁾	81 ⁽²⁾	400 (2)	8.4 (2)			0.24 (2)			<1.17	<1.94
Aniline		1,000 ⁽²⁾	1,400 (2)	81 (-)	130 (2)				0.063 (2)			<1.68	<2.77
Azobenzene	0.003 (2)	0.02 (2)	0.54 (2)	0.000 (2)	0.02 (2)	0.02 (2)						<1.17	<1.94
Benzidine				0.009 (2)	0.02	0.02			0.0000022			<3.54	<5.86
Benzoic acid	310,000 39,000 ⁽²⁾	1,000,000 1,000,000 ⁽²⁾	820,000 200,000 ⁽²⁾	6,100 ⁽²⁾	6,100 ⁽²⁾	6,100 ⁽²⁾			400 15 ⁽²⁾			< 5.03	<8.32
Benzyl alcohol	39,000		,		0,100							<1.68	<2.77
Bis(2-chloroethoxy)methane	0.6	5	75	0.2	0.47	0.66	0.5	3.7	0.0004			<1.17 <1.68	<1.94 <2.77
Bis(2-chloroethyl)ether	3,100 ⁽²⁾	82,000 ⁽²⁾	8,200 ⁽²⁾	1,300 ⁽²⁾	1,300 (2)	1,300 ⁽²⁾	0.5	J.1 	2.4 (2)			<1.00	<1.94
Bis(2-chloroisopropyl)ether Butyl benzyl phthalate	16,000	410,000	410,000	930	930	930			930			<1.17	<1.94
Carbazole	32	290	6,200						0.6			<1.68	<2.77
Dibenzofuran	160 ⁽²⁾	4,100 ⁽²⁾	4,100 ⁽²⁾						6.1 ⁽²⁾	310		0.78	<1.94
Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000			470			<1.68	<2.77
Dimethyl phthalate												<1.17	<1.94
Di-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300			2,300			<1.17	<1.94
Di-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000			10,000			<1.17	<1.94
Hexachlorobenzene	0.4	4	78	1	1.8	2.6	0.25	0.25	2			<1.17	<1.94
Hexachlorobutadiene												<1.68	<2.77
Hexachlorocyclopentadiene	550	14,000	14,000	10	16	1.1	5	30	400			<1.17	<1.94
Hexachloroethane	78	2,000	2,000				160	160	0.5			<1.68	<2.77
Isophorone	15,600	410,000	410,000	4,600	4,600	4,600	1,800	1,800	8			<1.17	<1.94
m,p-Cresol	390 ⁽³⁾	10,000 ⁽³⁾	1,000 ⁽³⁾	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾			0.2 (3)			3.69	<2.77
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1			<1.68	<2.77
N-Nitrosodimethylamine	0.013 (2)	0.11 (2)	1.6 (2)	0.012 (2)	0.023 (2)	0.032 (2)			0.0000067 (2)			<1.68	<2.77
N-Nitroso-di-n-propylamine	0.09	0.8	18						0.00005			<1.68	<2.77
N-Nitrosodiphenylamine	130	1,200	25,000						1			<1.68	<2.77
o-Cresol	3,900	100,000	100,000				4,800	4,800	15			3.67	<2.77
Pentachlorophenol	3	24	520						0.03			<6.7	<11.1
Phenol	23,000	610,000	61,000				12,000	12,000	100			1.35	<1.94
Pyridine	78 ⁽²⁾	2,000 (2)	2,000 (2)	200,000 (2)	200,000 (2)	200,000 (2)			0.032 (2)			<1.68	<2.77

Page 2 of 2 Table 5-7 - Floor Ameren Champaign Soil Confirmation Samples - SVOCs.xls

Objectives are for Class I Groundwater.
 Non-TACO or provisional ROs provided by the IEPA.
 Objective is for p-cresol.
 Objective is for m-cresol.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-8 Soil Confirmation Sample Analytical Results For Excavation Floor - Inorganics Champaign Former MGP Ameren Illinois

										IEPA Accepted		Location:	P6-B4.5-F	P6-D4.5-F
									Soil	Background	Project	Sample ID:	P6-B4.5-F (25)	P6-D4.5-F(25)
		Soil Ingestion	1		Soil Inhalatio	n	Indo	or Air	Component	Levels	Remediation	Sample Date:	10/15/2010	10/20/2010
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	for non-MSA	Objective	Depth (feet):	25	25
RCRA Metals (mg/kg)														
Mercury	23	610	61	10	16	0.10	0.45	0.45	6.4	0.06	0.1		0.01	0.006
Selenium	390	10,000	1,000						3.3	0.48			<4.0	< 0.545
Arsenic	13.0	13.0	61.0	750	1,200	25,000			30	13	13		14.3	2.6
Barium	5,500	140,000	14,000	690,000	910,000	870,000			1,800	110			15.6	73.4
Cadmium	78	2,000	200	1,800	2,800	59,000			59	0.6			0.34	0.17
Chromium	230	6,100	4,100	270	420	690			32	16.2	230		11.3	41.4
Lead	400	800	700						107	36	400		10.9	7.67
Silver	390	10,000	1,000						39	0.55			0.65	0.67
Cyanide (Amenable)	1,600	41,000	4,100						40	0.51	1,600		<0.555	<0.555
Cyanide (Total)													< 0.55	< 0.56

Concentration exceeds one or more project remediation objective.

Notes: (1) Objectives are for Class I Groundwater.

Table 5-9
Perimeter Soil Sample Analytical Results - BTEX and PNAs
Champaign Former MGP
Ameren Illinois

										IEPA Accepted		Sample Location:	PA1-01	PA1-02	PA1-03	PA3-05	PA3-09	PA3-10	PA3-11	PA3-12	PA4-00	PA4-01 ⁽⁵⁾	PA4-01 ^(b)
									Soil	Background	Project	Sample ID:	PA1-01 (3)	PA1-02 (3)	PA1-03 (3)	PA3-05	PA3-09	PA3-10	PA3-11	PA3-12	PA4-00 (10)	PA4-01	PA4-01 (3)
		Soil Ingestion	1		Soil Inhalation		Indo	or Air	Component	Levels	Remediation	Sample Date:	6/9/2011	6/9/2011	6/9/2011	7/29/2011	7/28/2011	7/27/2011	7/27/2011	7/27/2011	8/23/2011	7/27/2011	8/18/2011
Constituent	Residential	0			Commercial (Construction			to Groundwater ⁽³⁾	for MSA		mple Depth (feet):	3	3	3	3	3	3	3	3	10	3	3
BTEX Constituents (mg/kg	n)																						
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		< 0.0009	0.020	0.025	0.0044	0.0978	0.0188	< 0.029	0.0548	<0.841	1.29	<0.537
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		0.004	0.006	< 0.005								1.9
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		0.001	0.015	0.005								<2.68
m,p-Xylenes	16,000	410,000	41,000	420 ⁽¹⁾	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200(2)				0.003	0.008	<0.005								
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				0.001	0.004	<0.005								
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		0.004	0.012	<0.005	<0.005	0.009	0.0039	<0.145	0.034	<4.21	2.38	0.78
PNA Constituents (mg/kg)																							
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		<2.09	< 0.107	< 0.217	< 0.043	3.09	0.85	<0.11	<0.112	7.07	< 0.217	5.8
Acenaphthylene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		33.60	1.380	8.16	0.584	13.7	21.70	0.55	0.32	15.6	3.45	4.39
Anthracene	23,000	610,000	610,000						12,000	0.4			4.92	0.293	0.831	0.226	6.9	3.25	0.51	0.30	11.8	1.92	5.93
Benzo(a)anthracene	0.90	8	170						2	1.8	2		16.20	<0.107	9.18	1.240	17	11.70	3.92	2.18	5.74	14.60	14
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		76.60	0.575	27.60	1.380	23.7	24.60	4.89	2.33	5.01	21.60	18.7
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		62.50	1.940	24.20	2.310	24.4	24.20	16.20	6.43	3.9	26.90	20.7
Benzo(g,h,i)perylene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			36.50	1.130	18.40	1.090	12.5	16.40	6.76	3.62	1.86	13.40	13.4
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		20.10	0.554	7.86	0.784	7.71	8.69	5.67	2.13	1.28	9.81	7.88
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<41.2	<2.1	<4.28	<0.856	<9.01	<8.96	<2.18	<2.2	<2.12	<4.29	<12.8
Chrysene	88	780	17,000						160	2.7	88		25.0	<0.107	11.90	1.440	16.8	12.70	6.18	3.16	5.37	15.10	12.5
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		7.37	0.429	4.35	0.324	3.45	4.55	2.48	1.05	0.528	3.43	2.67
Fluoranthene	3,100	82,000	82,000						4,300	4.1			7.17	<0.107	5.86	1.600	28.9	9.05	2.32	2.91	12.8	18.80	18.1
Fluorene	3,100	82,000	82,000						560	0.18	3,100		<2.09	<0.107	0.597	0.068	4.48	1.87	<0.11	<0.112	17.3	0.36	4.66
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		28.1	1.520	14.90	0.993	10.7	13.90	7.07	3.28	1.55	12.70	10.1
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		14.7	<0.107	0.746	0.119	7.08	0.71	0.25	<0.112	38	1.49	9.97
Phenanthrene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		4.5	<0.107	0.789	0.741	20.6	5.35	0.52	1.02	38.8	4.05	18.4
Pyrene	2,300	61,000	61,000						4,200	3			30.7	0.199	16.200	1.890	39.8	17.40	2.78	3.21	17.3	21.40	19.6

Notes:

Objective is for m-xylene

Objective is for p-xylene

Objectives are for Class I groundwater.

Non-TACO or provisional ROs provided by the IEPA.

Soil sample PA4-01 (3) is a soil sample location along the western remediation site boundary near 5th Street.

⁽a) is a soil sample PA4-01 (3) is a soil sample location along the northern remediation site boundary near the railroad tracks.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-9
Perimeter Soil Sample Analytical Results - BTEX and PNAs
Champaign Former MGP
Ameren Illinois

										IEPA Accepted		Sample Location:	PA4-02	PA4-03	PA4-04	PA4-06	PA5-3	PA5-08	PA5-09	PA5-10	PA5-11	PA5-12
									Soil	Background	Project	Sample ID:	PA4-02 (3)	PA4-03 (3)	PA4-04 (3)	PA4-06 (3)	PA5-3 (3)	PA5-08 (3)	PA5-09 (3)	PA5-10 (3)	PA5-11 (3)	PA5-12 (3)
		Soil Ingestion	1		Soil Inhalation		Indoo	or Air	Component	Levels	Remediation	Sample Date:	8/18/2011	8/17/2011	8/17/2011	8/17/2011	8/10/2011	8/23/2011	8/22/2011	8/22/2011	8/19/2011	8/19/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽³⁾	for MSA	Objectives ar	mple Depth (feet):	3	3	3	3	3	3	3	3	3	3
BTEX Constituents (mg/kg	<u>a)</u>																					
Benzene	12	100	2,300	8.0	1.6	2.2	0.069	0.51	0.03		0.069		1.2	4.9	32.2	0.604	<0.0014	4.14	<1.85	2.55	1.84	6.86
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		1.3	5.1	5.2	<1.51	<0.007	32.2	8.1	4.1	1.57	2.09
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		<3.33	4	8.3	0.85	<0.008				1.12	6.28
m,p-Xylenes	16,000	410,000	41,000	420(1)	420(1)	5.9 ⁽²⁾	75 ⁽²⁾	120 ⁽²⁾	200 ⁽²⁾								< 0.009				0.837	3.35
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190								< 0.010				0.38	1.3
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		3.57	25.8	23	1.1	<0.007	25.3	5.3	4.1	1.217	4.65
PNA Constituents (mg/kg))																					
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		20.1	12.6	30.3	<13.6	<0.11	65.7	80.3	49.1	100	442
Acenaphthylene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		1.91	<0.261	8.15	37.2	3.35	8.78	8.01	7.51	34.2	129
Anthracene	23,000	610,000	610,000						12,000	0.4			16.9	12.4	58.6	19.2	0.487	40	46.5	26.6	53.4	337
Benzo(a)anthracene	0.90	8	170						2	1.8	2		10.9	7.7	74.2	48.4	0.746	22.2	25.8	28.7	60.5	280
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		7.18	4.35	69.7	83.8	4.08	19.5	20.6	29.6	73.3	303
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		9.08	5.17	84	184	3.12	15.7	16.5	27.8	70.4	302
Benzo(g,h,i)perylene	$2.300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			2.1	1.56	31.2	93.3	3	9.19	6.79	12.2	52	146
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		3.09	2.03	34.3	78.7	0.973	5.28	5.96	9.04	26.8	111
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<5.12	<5.15	<54.1	<269	<2.17	<6.89	<6.62	<6.54	<52.8	<161
Chrysene	88	780	17,000						160	2.7	88		11	6.89	70.3	39	1.2	20.9	24.4	28.1	61.2	281
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		0.772	0.443	8.2	31.9	0.476	2.57	1.91	3.32	8.41	32.9
Fluoranthene	3,100	82,000	82,000						4,300	4.1			37.6	22.7	187	59.8	0.584	46.2	55.7	58.9	117	625
Fluorene	3,100	82,000	82,000						560	0.18	3,100		25.3	17	47.3	<13.6	0.324	41.8	51.3	29.1	59.9	324
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		2.31	1.69	29.8	104	2.54	7.58	6.03	10.9	42.8	119
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		5.97	8.56	22.3	18.6	0.357	25.2	32.1	19.2	56.8	768
Phenanthrene	2,300 ⁽⁴⁾	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		37.1	23.3	151	28.3	0.216	78.4	143	75.4	144	969
Pyrene	2,300	61,000	61,000						4,200	3			33	19.7	155	73.1	1.83	67.4	78.5	81.7	173	726

Notes:

^{'(1)} Objective is for m-xylene

Objective is for p-xylene

Objectives are for Class I groundwater.

⁽⁴⁾ Non-TACO or provisional ROs provided by the IEPA.

Soil sample PA4-01 (3) is a soil sample location along the western remediation site boundary near 5th Street.

Soil sample PA4-01 (3) is a soil sample location along the northern remediation site boundary near the railroad tracks.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-9
Perimeter Soil Sample Analytical Results - BTEX and PNAs
Champaign Former MGP
Ameren Illinois

										1554.4			515.10	51511		510.0
										IEPA Accepted		Sample Location:	PA5-13	PA5-14	PA6-2	PA6-3
		0 "11 "			0 11 1 1 1				Soil	Background	Project	Sample ID:	PA5-13 (3)	PA5-14 (3)	PA6-2 (3)	PA6-3 (3)
0	D	Soil Ingestion			Soil Inhalation			oor Air	Component	Levels	Remediation	Sample Date:	8/18/2011	8/18/2011	8/9/2011	8/9/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽³⁾	for MSA	Objectives	ample Depth (feet):	3	3	3	3
BTEX Constituents (mg/kg	1															
Benzene	12	100	2,300	0.8	1.6	2.2	0.069	0.51	0.03		0.069		32.6	<0.0167		
Ethylbenzene	7,800	200,000	20,000	400	400	58	130	130	13		58		15	<0.0833		
Toluene	16,000	410,000	410,000	650	650	42	240	240	12		42		12.7	0.028		
m,p-Xylenes	16,000	410,000	41,000	420 ⁽¹⁾	420(1)	5.9(2)	75 ⁽²⁾	120 ⁽²⁾	200(2)				10.2	0.022		
o-Xylene	16,000	410,000	41,000	410	410	6.5	98	140	190				7.65	<0.0833		
Xylenes	16,000	410,000	41,000	320	320	5.6	63	100	150		5.6		17.85	0.022		
PNA Constituents (mg/kg)																
Acenaphthene	4,700	120,000	120,000						570	0.13	4,700		625	<1.16	< 0.114	1.07
Acenaphthylene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						85 ⁽⁴⁾	0.07	2,300		74.6	7.71	4.57	20.9
Anthracene	23,000	610,000	610,000						12,000	0.4			328	1.93	0.447	8.43
Benzo(a)anthracene	0.90	8	170						2	1.8	2		230	10.8	0.916	20.9
Benzo(a)pyrene	0.09	0.80	17						8	2.1	2.1		209	27	5.67	49.9
Benzo(b)fluoranthene	0.90	8	170						5	2.1	2.1		212	24.6	4.17	49.2
Benzo(g,h,i)perylene	$2.300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						27,000 ⁽⁴⁾	1.7			91.8	23.4	4.75	28.3
Benzo(k)fluoranthene	9	78	1,700						49	1.7	9		81.2	8.84	1.13	14.4
Bis(2-ethylhexyl)phthalate	46	410	4,100	31,000	31,000	31,000			3,600				<133	<22.8	<2.25	<9.74
Chrysene	88	780	17,000						160	2.7	88		226	12.6	1.69	26.8
Dibenzo(a,h)anthracene	0.09	0.80	17						2	0.42	0.42		21.8	3.63	0.805	5.62
Fluoranthene	3,100	82,000	82,000						4,300	4.1			515	13.3	1.08	42.7
Fluorene	3,100	82,000	82,000						560	0.18	3,100		382	<1.16	0.425	4.6
Indeno(1,2,3-cd)pyrene	0.90	8.00	170						14	1.6	1.6		75.9	15.8	3.32	24.4
Naphthalene	1,600	41,000	4,100	170	270	1.8	34	34	12	0.2	1.8		670	1.59	<0.114	2.42
Phenanthrene	$2,300^{(4)}$	61,000 ⁽⁴⁾	61,000 ⁽⁴⁾						200 ⁽⁴⁾	2.5	2,300		914	2.49	< 0.114	30.5
Pyrene	2,300	61,000	61,000						4,200	3			639	22.7	3.16	49.1

Notes:

Page 3 of 3

Table 5-9 Perimeter Soill Samples - BTEX and PAHs.xls

⁽¹⁾ Objective is for m-xylene

Objective is for p-xylene

⁽³⁾ Objectives are for Class I groundwater.

⁽⁴⁾ Non-TACO or provisional ROs provided by the IEPA.

⁽b) Soil sample PA4-01 (3) is a soil sample location along the western remediation site boundary near 5th Street.

⁽b) Soil sample PA4-01 (3) is a soil sample location along the northern remediation site boundary near the railroad tracks.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

TABLE 5-10 Perimeter Soil Sample Analytical Results - VOCs Champaign Former MGP Ameren Illinois

									Soil	Project	Sample Location: Sample ID:		PA2-01A-F PA2-01A (10)		PA5-6 PA5-6(3)	PA5-11 PA5-11(3)	PA5-12 PA5-12(3)	PA5-13 PA5-13(3)
Constituent	Residential	Soil Ingestion Commercial	Construction	Residential	Soil Inhalatio	Onstruction	Ind Residentail	oor Air Commercial	Component to Groundwater ⁽¹⁾	Remediation Objectives	Sample Date: Sample Depth (feet):	8/16/2011 3	8/16/2011 10	8/10/2011 3	8/10/2011 3	8/19/2011 3	8/19/2011 3	8/18/2011 3
Volatile Organic Compounds (mg/kg		Commorcial	CONCUCUON	rtodiadritia	Commorcial	00110111011011	rtoolooritaii	Commorcial		Објосатоо	campio Bopai (icot).							
1.1.1.2-Tetrachloroethane	2,300 (2)	61,000 ⁽²⁾	6.100 ⁽²⁾	2.100 (2)	2.100 (2)	2.100 (2)			3.4 (2)			< 0.27	< 0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
1.1.1-Trichloroethane				1,200	1,200	1,200	560	560	2			<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
1.1.2.2-Tetrachloroethane	4,700 (2)	120,000 (2)	12,000 (2)	2,000 (2)	2,000 (2)	2,000 (2)			3.3 ⁽²⁾			<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
1,1,2-Trichloro-1,2,2-trifluoroethane												< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
1,1,2-Trichloroethane	310	8,200	8,200	1,800	1,800	1,800	900	900	0.02			< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
1,1-Dichloro-2-propanone												<2.7	< 0.515	<1.77	<1.62	< 0.77	<17.7	<25
1,1-Dichloroethane	7,800	200,000	200,000	1,300	1,700	130			23			< 0.27	<0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
1,1-Dichloroethene	3,900	100,000	470	290	10,000	3	13	77	0.06			< 0.27	<0.0515	<0.177	< 0.162	< 0.077	<1.77	<2.5
1,1-Dichloropropene												<0.27	<0.0515	<0.177	< 0.162	< 0.077	<1.77	<2.5
1,2,3-Trichlorobenzene	(7)								(7)			<0.27	<0.0515	<0.177	< 0.162	<0.077	<1.77	<2.5
1,2,3-Trichloropropane	0.092 (2)	0.82 (2)	18	730 (2)	730 (2)	730 (2)			0.0001 (2)			< 0.539	<0.103	< 0.355	< 0.324	<0.154	<3.55	<5.01
1,2,3-Trimethylbenzene									-			<0.27	<0.0515	<0.177	<0.162	0.329	0.87	14.5
1,2,4-Trichlorobenzen∈	780	20,000	2,000	3,200	3,200	920	220	980	5			<0.27	<0.0515	< 0.177	<0.162	<0.077	<1.77	<2.5
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,900 ⁽²⁾ 0.46	100,000 ⁽²⁾	100,000 ⁽²⁾ 89	73 ⁽²⁾ 11	120 ⁽²⁾ 17	0.25 ⁽²⁾ 0.11	0.0073	0.054	18 ⁽²⁾ 0.002			<0.27 <0.27	<0.0515 <0.0515	<0.177 <0.177	<0.162 <0.162	0.705 <0.077	1.4 <1.77	7.09 <2.5
1,2-Dibromo-3-cnioropropane 1,2-Dibromoethane (EDB)	0.46	2.9	62	0.06	0.12	0.11	0.0073	0.054	0.002			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77 <1.77	<2.5 <2.5
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5 <2.5
1,2-Dichloroethane	7,000	63	1.400	0.4	0.7	0.99	0.066	0.48	0.02			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
1,2-Dichloropropane	9	84	1,800	15	23	0.5	0.023	0.17	0.03			< 0.27	< 0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
1,3,5-Trimethylbenzene	3,900 (2)	100,000 (2)	100.000 (2)	45 ⁽²⁾	72 (2)	0.15 (2)	0.020	0.17	10 (2)			< 0.27	<0.0515	<0.177	<0.162	0.239	0.62	7.83
1.3-Dichlorobenzene												<0.27	< 0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
1,3-Dichloropropane	1,600 (2)	41,000 (2)	41,000 (2)	1,000 (2)	1,000 (2)	1,000 (Z)			0.83 (2)			<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
1,4-Dichlorobenzene				11,000	17,000	340			2			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
1-Chlorobutane	3,100 (2)	82,000 (2)	14,000 (Z)	1,200 (2)	1,200 (2)	1,200 (2)			3.1 ⁽²⁾			< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
2,2-Dichloropropane												< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
2-Butanone (methyl ethyl ketone)	47,000 ⁽²⁾	1,000,000 (2)	120,000 (2)	25,000 ⁽²⁾	25,000 (2)	710 (2)	23,000	23,000	17 (2)			<2.7	< 0.515	<1.77	<1.62	< 0.77	<17.7	<25
2-Chlorotoluene (o-chlorotoluene	1,600 (2)	41,000 (2)	41,000 (2)	1,400 (2)	1,400 (2)	1,400 (2)			4 (2)			< 0.27	<0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
2-Hexanone												<2.7	<0.515	<1.77	<1.62	<0.77	<17.7	<25
2-Nitropropane												<2.7	<0.515	<1.77	<1.62	<0.77	<17.7	<25
4-Chlorotoluene					(7)							<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
4-Methyl-2-pentanone (MIBK)				3,100 (2)	3,100 (2)	340 ⁽²⁾						<2.7	<0.515	<1.77	<1.62	<0.77	<17.7	<25
Acetone	70,000 39 ⁽²⁾	1,000 (2)	1.600 ⁽²⁾	100,000 0.16 ⁽²⁾	100,000 0.26 (2)	100,000 0.017 (2)	100,000	100,000	25 0.014 ⁽²⁾	7,800		<2.7	<0.515	<1.77	<1.62	< 0.77	<17.7	<25
Acrolein	1.2 (4)	11 (4)	230 (4)	0.16	0.54 (4)	0.017 (4)			0.014			<5.39	<1.03	<3.55	<3.24	<1.54	<35.5	<50.1
Acrylonitrile	1.2	11.5	230	0.26	0.54	0.17			0.0006			<0.539 <0.27	<0.103 <0.0515	<0.355 <0.177	<0.324 <0.162	<0.154 <0.077	<3.55 <1.77	<5.01 <2.5
Allyl chloride Bromobenzene	1.600 (2)	41,000 (2)	41.000 ⁽²⁾	100 (2)	160 ⁽²⁾	11 ⁽²⁾			2.2 (2)			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5 <2.5
Bromochloromethane	1,000	41,000	41,000	100		"			2.2			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
Bromodichloromethane	10	92	2,000	3,000	3,000	3,000	1,400	1,400	0.6			< 0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
Bromoform	81	720	16,000	53	100	140	49	360	0.8			< 0.27	< 0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
Bromomethane (methyl bromide)	110	2,900	1,000	10	15	3.9	0.71	4.3	0.2			< 0.539	<0.103	< 0.355	< 0.324	<0.154	<3.55	<5.01
Carbon disulfide	7,800	200,000	20,000	720	720	9	38	230	32			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
Carbon tetrachloride	5	44	410	0.3	0.64	0.9	0.021	0.15	0.07			< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
Chlorobenzene	1,600	41,000	4,100	130	210	1.3	54	330	1			< 0.27	< 0.0515	< 0.177	< 0.162	<0.077	<1.77	<2.5
Chloroethane												< 0.539	<0.103	< 0.355	< 0.324	< 0.154	<3.55	<5.01
Chloroform	100	940	2,000	0.3	0.54	0.76	0.028	0.2	0.6			< 0.27	<0.0515	< 0.177	<0.162	< 0.077	<1.77	<2.5
Chloromethane (methyl chloride)												< 0.539	<0.103	< 0.355	< 0.324	<0.154	<3.55	<5.01
cis-1,2-Dichloroethene	780	20,000	20,000	1,200	1,200	1,200	700	700	0.4			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
cis-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39	0.061	0.45	0.004			<0.216	<0.0412	<0.142	<0.13	<0.0616	<1.42	<2
Cyclohexanone	390,000 (2)	1,000,000 (2)	1,000,000 (2)	660 ⁽²⁾	660 ⁽²⁾	660 ⁽²⁾			150 ⁽²⁾			<5.39	<1.03	<3.55	<3.24	<1.54	<35.5	<50.1
Dibromochloromethane (chlorodibrom	1,600	41,000	41,000	1,300	1,300	1,300	630	630	0.4			< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
Dibromomethane (methylene bromide	780 ⁽²⁾ 16,000 ⁽²⁾	20,000 ⁽²⁾ 410,000 ⁽²⁾	20,000 ⁽²⁾ 180,000 ⁽²⁾	2,700 ⁽²⁾ 190 ⁽²⁾	2,700 ⁽²⁾ 310 ⁽²⁾	2,700 ⁽²⁾ 20 ⁽²⁾		4.0	0.34 ⁽²⁾ 43 ⁽²⁾			<0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
Dichlorodifluoromethane	70,000 (2)	1,000,000 (2)	1,000,000 (2)	10,000 (2)	10,000 ⁽²⁾	10,000 (2)	6.8	4.2	43 ^(c)			< 0.539	<0.103	< 0.355	<0.324	<0.154	< 3.55	<5.01
Ethyl acetate Ethyl ether	16.000 ⁽²⁾	410,000 (2)	410,000 (2)	8,800 ⁽²⁾	8.800 ⁽²⁾	8,800 ⁽²⁾			6.1 (2)			<2.7 <0.27	<0.515 <0.0515	2.36 <0.177	1.5 <0.162	<0.77 <0.077	<17.7 <1.77	<25 <2.5
Ethyl methacrylate		410,000	410,000	0,000	0,000	0,000			0.1			<0.27	<0.0515	< 0.177	<0.162	< 0.077	<1.77	<2.5 <2.5
Heptane												<1.08	<0.206	<0.709	<0.162	<0.077	<7.1	<2.5 <10
Hexachlorobutadiene												< 0.27	< 0.0515	< 0.109	<0.162	< 0.077	<1.77	<2.5
i ionaci iidi ubu (aulei le												~0.∠1	VU.UJ IJ	NO.177	~U. 1UZ	~0.011	\$1.11	~Z.J

Page 1 of 2 Table 5-10 Perimeter Soil Samples - VOCs.xls

Notes:

10 Objectives are for Class I Groundwater.

12 Non-TACO or provisional ROs provided by the IEPA.

13 Non-Description of this constituent by the IEPA.

14 No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

15 Concentration exceeds one or more project remediation objective.

TABLE 5-10 Perimeter Soil Sample Analytical Results - VOCs Champaign Former MGP Ameren Illinois

		Soil Ingestion			Soil Inhalati	on	Indo	or Air	Soil Component	Project Remediation	Sample Location: Sample ID: Sample Date:	PA1-Wall PA1-Wall (3) 8/16/2011	PA2-01A-F PA2-01A (10) 8/16/2011	PA5-5 PA5-5(3) 8/10/2011	PA5-6 PA5-6(3) 8/10/2011	PA5-11 PA5-11(3) 8/19/2011	PA5-12 PA5-12(3) 8/19/2011	PA5-13 PA5-13(3 8/18/201
Constituent	Residential		Construction	Residential		Construction	Residentail	Commercial	to Groundwater ⁽¹⁾	Objectives	Sample Depth (feet):	3	10	3	3	3	3	3
Hexachloroethane	78	2,000	2,000				160	160	0.5			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
lodomethane												< 0.539	< 0.103	< 0.355	< 0.324	< 0.154	<3.55	<5.01
Isopropylbenzene (cumene)	7,800 (2)	200,000 (2)	61,000 (2)	500 ⁽²⁾	790 ⁽²⁾	51 ⁽²⁾	21	130	91 (2)			0.1	0.027	< 0.177	< 0.162	0.0853	<1.77	<2.5
Methacrylonitrile												<2.7	< 0.515	<1.77	<1.62	< 0.77	<17.7	<25
Methyl Methacrylate												< 0.27	< 0.0515	< 0.177	< 0.162	< 0.077	<1.77	<2.5
Methyl tert-butyl ether	780	20.000	2,000	8,800	8,800	140	2,900	6,300	0.32			< 0.108	< 0.0206	< 0.0709	< 0.0648	< 0.0308	< 0.71	<1
Methylacrylate	2.300 (2)	61,000 (2)	6.100 (z)	6.500 (2)	6,500 (2)	6.500 (Z)			0.89(2)			< 0.539	< 0.103	< 0.355	< 0.324	< 0.154	<3.55	<5.01
Methylene chloride (dichloromethane)	85	760	12.000	13	24	34	1.4	10	0.02	1.4		0.12	0.037	0.055	0.034	0.054	<1.77	<2.5
Naphthalene	1.600	41.000	4.100	170	270	1.8	34	34	12	1.8		0.24	<0.103	< 0.355	< 0.324	2.43	84.9	127
-Butylbenzene												<0.27	0.023	< 0.177	<0.162	0.0902	0.61	6.71
-Hexane				290 (2)	290 (2)	15 ⁽²⁾						<1.08	<0.206	<0.709	< 0.648	0.047	<7.1	<10
Vitrobenzene	39	1,000	1.000	92	140	9.4	140	380	0.1			<5.39	<1.03	<3.55	<3.24	<1.54	<35.5	<50.1
-Propylbenzene		1,000	1,000		140	5.4						< 0.27	<0.0515	<0.177	<0.162	0.116	<1.77	<2.5
Pentachloroethane												< 0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
o-Isopropyltoluene												<0.27	<0.0515	<0.177	<0.162	0.069	<1.77	<2.5
Propionitrile												<2.7	<0.515	<1.77	<1.62	< 0.77	<17.7	<2.5
sec-Butvlbenzene												<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	5.1
ec-Butyiberizene Styrene			41.000	1.500		430		230	4	230		<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	5.1 <2.5
	16,000	410,000	,	,	1,500		230					<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5 <2.5
ert-Butylbenzene			0.400					4.7										
etrachloroethene	12	110	2,400	11	20	28	0.24	1.7	0.06			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
etrahydrofuran												<2.7	< 0.515	<1.77	<1.62	<0.77	<17.7	<25
rans-1,2-Dichloroethene	1,600	41,000	41,000	3,100	3,100	3,100			0.7			<0.27	<0.0515	<0.177	< 0.162	<0.077	<1.77	<2.5
rans-1,3-Dichloropropene	6.4	57	1,200	1.1	2.1	0.39			0.004			<0.216	<0.0412	< 0.142	<0.13	< 0.0616	<1.42	<2
richloroethene	58	520	1,200	5	8.9	12	0.26	1.9	0.06			<0.27	<0.0515	<0.177	<0.162	<0.077	<1.77	<2.5
richlorofluoromethane	23,000 (2)	610,000 (2)	140,000 (2)	850 ⁽²⁾	1,400 (2)	88 (2)	31	190	34 (2)			<0.27	<0.0515	<0.177	<0.162	< 0.077	<1.77	<2.5
/inyl acetate	78,000	1,000,000	200,000	1,000	1,600	10	270	1,600	170 ⁽²⁾			<2.7	< 0.515	<1.77	<1.62	<0.77	<17.7	<25
'inyl chloride	0.46	7.9	170	0.28	1.1	1.1	0.011	0.15	0.01			<0.108	<0.0206	<0.0709	<0.0648	<0.0308	<0.71	<1
lotes: 10 Objectives are for Class I Ground 12 Non-TACO or provisional ROs pi 14 No objective has been published	rovided by the for this consti					his constituent.												

Page 2 of 2 Table 5-10 Perimeter Soil Samples - VOCs.xls

TABLE 5-11 Perimeter Soil Sample Analytical Results - SVOCs Champaign Former MGP Ameren Illinois

											Sample Location:	PA4-00	PA4-02	PA4-03	PA4-04	PA5-08	PA5-09	PA5-11	PA5-12	PA5-13
									Soil	Project	Sample ID:	PA4-00 (10)	PA4-02 (3)	PA4-03 (3)	PA4-04 (3)	PA5-08 (3)	PA5-09 (3)	PA5-11 (3)	PA5-12 (3)	PA5-13 (3)
		Soil Ingestion			Soil Inhalation			or Air	Component	Remediation	Sample Date:	8/23/2011	8/18/2011	8/17/2011	8/17/2011	8/23/2011	8/22/2011	8/19/2011	8/19/2011	8/18/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater(1)	Objectives	Sample Depth (feet):	10	3	3	3	3	3	3	3	3
Semivolatile Organic Compounds (mg/kg)																				
1,2,4-Trichlorobenzene	780	20,000	2,000	3,200	3,200	920	220	980	5				<3.82	<3.84	<40.3					
1,2-Dichlorobenzene	7,000	180,000	18,000	560	560	310	200	200	17				<3.82	<3.84	<40.3					
1,2-Diphenylhydrazine													<6.42	<6.46	<67.8					
1,3-Dichlorobenzene													<3.82	<3.84	<40.3					
1,4-Dichlorobenzene				11,000	17,000	340	1.3	9.8	2				<3.82	<3.84	<40.3					
2,4,5-Trichlorophenol	7,800	200,000	200,000	200					130				<2.67	<2.69	<28.2					
2,4,6-Trichlorophenol	58	520	11,000	200	390	540			0.09				<2.67	<2.69	<28.2					
2,4-Dichlorophenol	230	6,100	610						0.86				<3.82	<3.84	<40.3					
2,4-Dimethylphenol	1,600	41,000	41,000						9				<3.82	<3.84	<40.3					
2,4-Dinitrophenol	160	4,100	410						0.2				<7.64	<7.69	<80.7					
2,4-Dinitrotoluene	0.9	8.4	180						0.0008				<2.67	<2.69	<28.2					
2,6-Dinitrotoluene	0.9	8.4	180						0.0007 49 ⁽²⁾				<2.67	<2.69	<28.2					
2-Chloronaphthalene (beta-chloronaphthalene)	6,300 ⁽²⁾	160,000 (2)	160,000 (2)										<2.67	<2.69	<28.2					
2-Chlorophenol	390	10,000	10,000	53,000	53,000	53,000	49,000	49,000	4				<3.82	<3.84	<40.3					
2-Methoxy-4-methylphenol	310 ⁽²⁾	8,200 ⁽²⁾	820 ⁽²⁾						7.2 ⁽²⁾			40.4	<4.97	<5	<52.4	40.4		45.0	257	
2-Methylnaphthalene	230 (2)	6,100 ⁽²⁾	610 ⁽²⁾	35 ⁽²⁾	56 ⁽²⁾	3.6 ⁽²⁾	83	83	0.14 ⁽²⁾	83		10.4	3.02	4.7	6.45	12.1	20.7	15.8	357	293
2-Nitroaniline													<7.64	<7.69	<80.7					
2-Nitrophenol									0.007				<2.67	<2.69	<28.2					
3,3'-Dichlorobenzidine	23 ⁽²⁾	13 610 ⁽²⁾	280 61 ⁽²⁾	250 ⁽²⁾	400 ⁽²⁾	26 ⁽²⁾			0.007 0.01 ⁽²⁾				<2.67	<2.69	<28.2					
3-Nitroaniline				250 17	400 17								<7.64	<7.69	<80.7					
4,6-Dinitro-2-methylphenol	7.8	200	820						0.0031				<7.64	<7.69	<80.7					
4-Bromophenyl phenyl ether													<2.67	<2.69	<28.2					
4-Chloro-3-methylphenol	210		000						0.7				<3.82	<3.84	<40.3					
4-Chloroaniline (p-chloroaniline)	310	8,200	820						0.7				<3.82 <2.67	<3.84 <2.69	<40.3 <28.2					
4-Chlorophenyl phenyl ether 4-Nitroaniline (p-nitroaniline)	230 (2)	6,100 ⁽²⁾	610 ^(∠)	1,000 (2)	1,600 (2)	110 ⁽²⁾			0.1 ^(∠)				<3.82	<2.69 <3.84	<40.3					
	630 ⁽²⁾	16,000 ⁽²⁾	16,000 ⁽²⁾	1,000	1,000				0.24 (2)				<2.67	<2.69	<40.3 <28.2					
4-Nitrophenol Aniline	110 ⁽²⁾	1,000 ⁽²⁾	1,400 ⁽²⁾	81 ⁽²⁾	130 ⁽²⁾	8.4 ⁽²⁾			0.063 ⁽²⁾				<3.82	<3.84	<40.3					
Azobenzene		1,000	1,400			0.4			0.003				<2.67	<2.69	<28.2					
Benzoic acid	310,000	1,000,000	820,000						400				<11.5	<11.5	<121					
Benzyl alcohol	39,000	1,000,000	200,000	6,100	6,100	6,100			15				<3.82	<3.84	<40.3					
Bis(2-chloroethoxy)methane	39,000	1,000,000	200,000	0,100	0,100	0,100							<2.67	<2.69	<28.2					
Bis(2-chloroethyl)ether	0.6	5	75	0.2	0.47	0.66	0.5	3.7	0.0004				<3.82	<3.84	<40.3					
Bis(2-chloroisopropyl)ether	3,100 ⁽²⁾	82,000 ⁽²⁾	8,200 ⁽²⁾	1,300 ⁽²⁾	1,300 ⁽²⁾	1,300 ⁽²⁾			2.4 (2)				<2.67	<2.69	<28.2					
Butyl benzyl phthalate	16,000	410,000	410,000	930	930	930			930				<2.67	<2.69	<28.2					
Carbazole	32	290	6,200						0.6				<3.82	<3.84	12					
Dibenzofuran	160 ⁽²⁾	4,100 ⁽²⁾	4,100 ⁽²⁾						6.1 ⁽²⁾	310			11.8	7.79	33.6			<69	66	53
Diethyl phthalate	63,000	1,000,000	1,000,000	2,000	2,000	2,000			470				<3.82	<3.84	<40.3					
Dimethyl phthalate		1,000,000		2,000	2,000	2,000			470				<2.67	<2.69	<28.2					
Di-n-butyl phthalate	7,800	200,000	200,000	2,300	2,300	2,300			2,300				<2.67	<2.69	<28.2					
Di-n-octyl phthalate	1,600	41,000	4,100	10,000	10,000	10,000			10,000				<2.67	<2.69	<28.2					
Hexachlorobenzene	0.4	41,000	78	1	1.8	2.6	0.25	0.25	2				<2.67	<2.69	<28.2					
Hexachlorobutadiene					1.0	2.0	0.20	0.23					<3.82	<3.84	<40.3					
Hexachlorocyclopentadiene	550	14,000	14,000	10	16	1.1	5	30	400				<2.67	<2.69	<28.2					
Hexachloroethane	78	2,000	2,000				160	160	0.5				<3.82	<3.84	<40.3					
Isophorone	15,600	410,000	410,000	4,600	4,600	4,600	1,800	1,800	8				<2.67	<2.69	<28.2					
m,p-Cresol	390 ⁽³⁾	10,000 (3)	1,000 (3)	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾	8,100 ⁽⁴⁾			0.2 (3)				<3.82	<3.84	<40.3					
Nitrobenzene	39	1,000	1,000	92	140	9.4	140	380	0.1				<3.82	<3.84	<40.3					
N-Nitrosodimethylamine	0.013	0.11	1.6	0.012	0.023	0.032			0.0000067				<3.82	<3.84	<40.3					
N-Nitroso-di-n-propylamine	0.09	0.8	18						0.00005				<3.82	<3.84	<40.3					
N-Nitrosodiphenylamine	130	1,200	25,000						1				<3.82	<3.84	<40.3					
o-Cresol	3,900	100,000	100,000				4,800	4,800	15				<3.82	<3.84	<40.3					
Pentachlorophenol	3	24	520						0.03				<15.3	<15.4	<161					
Phenol	23,000	610,000	61,000				12,000	12,000	100				<2.67	<2.69	<28.2					
Pyridine	78 ⁽²⁾	2,000 (4)	2,000 (4)	200,000 (4)	200,000 (4)	200,000 (4)			0.032 (4)				<3.82	<3.84	<40.3					

Table 5-11 - Perimeter Soil Samples - SVOCs.xls Page 1 of 1

Notes:

(1) Objectives are for Class I Groundwater.

(2) Non-TACO or provisional ROs provided by the IEPA.

(3) Objective is for p-cresol.

Objective is for p-cresol.

Objective is for m-cresol.

^{&#}x27;--- No objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

*Note: Hatched columns represent areas that have been removed during remediation.

TABLE 5-12 Perimeter Soil Sample Analytical Results - Inorganics Champaign Former MGP Ameren Illinois

										IEPA Accepted		Location:	PA1-02	PA1-03	PA1-04	PA1-Wall	PA2-01B	PA5-11	PA5-12	PA5-14	PA6-3
									Soil	Background	Project	Sample ID:	PA1-02 (3)	PA1-03 (3)	PA1-04 (3)	PA1-Wall (3)	PA2-01B (3)	PA5-11 (3)	PA5-12 (3)	PA5-14 (3)	PA6-3(3)
		Soil Ingestion	1		Soil Inhalatio	n	Indoo	r Air	Component	Levels	Remediation	Sample Date:	6/9/2011	6/9/2011	6/9/2011	8/16/2011	8/3/2011	8/19/2011	8/19/2011	8/18/2011	8/9/2011
Constituent	Residential	Commercial	Construction	Residential	Commercial	Construction	Residential	Commercial	to Groundwater ⁽¹⁾	for non-MSA	Objective	Depth (feet):	3	3	3	3	3	3	3	3	3
Metals (mg/kg)																					
Mercury	23	610	61	10	16	0.10	0.45	0.45	6.4	0.06	0.1		0.105	0.105	0.186	0.027	8.47	0.129	0.414	0.27	
Selenium	390	10,000	1,000						3.3	0.48			0.604	0.56	0.41	< 0.577	<0.588	< 0.556	2	1.71	0.46
Arsenic	13.0	13.0	61.0	750	1,200	25,000			30	13	13		10.8	16.2	9.66	14	7.02				40.3
Barium	5,500	140,000	14,000	690,000	910,000	870,000			1,800	110			84.9	108	136	194	154				
Cadmium	78	2,000	200	1,800	2,800	59,000			59	0.6			0.69	1.26	0.21	0.45	1.16				
Chromium	230	6,100	4,100	270	420	690			32	16.2	230		16.2	19.7	22	21.1	18.7				
Lead	400	800	700						107	36	400		41.3	54.2	55.9	15.3	89.9				
Silver	390	10,000	1,000						39	0.55			<0.51	<0.51	<0.55	<0.55	<0.55				
Cyanide (Amenable)	1,600	41,000	4,100						40	0.51	1,600		17	9.22	1.8		<3.38				
Cyanide (Total)													39.8	13.5	5.35	2.51	22.6				

Page 1 of 1 Table 5-12 - Perimeter Soil Samples - Inorganics.xls

Notes:

10 Objectives are for Class I Groundwater.

11 Objective has been published for this constituent by the IEPA, or the sample was not analyzed for this constituent.

Concentration exceeds one or more project remediation objective.

Table 5-13 Evaluation for Soil Attenuation Champaign Former MGP Ameren Illinois

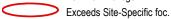
	Total Organic		
	Compounds Using 50%	Total Petroleum	Site-Specific
Sample	of Detection Limit (1)	Hydrocarbons (2)	Soil $f_{oc}^{(3)}$
Identification	(mg/kg)	(mg/kg)	(mg/kg)
P1-F5-F(20)	746.78		10,400
P1-H5-F(20.5)	752.03		10,400
P1-H3.5-F(20)	472.96		10,400
P1-F2-F(21)	747.64		10,400
P1-H1-F (20)	70.87		10,400
P1-F3.5-F(20.5)	1,586.11		10,400
P1-D5-F(25)	746.59		10,400
P1-D3.5-F(25)	898.74		10,400
P1-C5-F(22)	18.66		10,400
P1-B5-F (25)	47.92		10,400
P1-B3.5-F (26)	51.54		10,400
P1-B3.5-F (24)	95.97		10,400
P1-B2-F (28)	199.48		10,400
P1-B2-F (26)	590.84		10,400
P1-B2-F (24-25)	762.99		10,400
P1-B2-F (22)	1,306.44		10,400
P2-B1.5-F(22)	18.44		10,400
P2-B2.5-F(22)	526.98		10,400
P2-B4-F(22)	966.42	28.97	10,400
P2-C4-F(22)	1036.04	333.70	10,400
P2-D2-F(22)	8842.31	1509.90	10,400
P2-D4-F(22)	16911.42	3359.00	10,400
P2-H1.5-F (24)	28.33	11.18	10,400
P2-H3.5-F (24)	74.27	10.68	10,400
P2-FG-1.5-F (28)	213.88	10.96	10,400
P2-FG-3.5-F (24)	150.85	24.00	10,400
P2-GH-F(17)	151.03	60.80	10,400
P2-E2.5-F (24)	1057.87	27.19	10,400
P2-E4-F (24)	1297.42	28.53	10,400
P2-E4-F (30)	29.21	11.14	10,400
P3-B2-F(22)	618.24	47.44	10,400
P3-B2-F(24)	29.32	11.04	10,400
P3-B4-F(22)	28.81	11.08	10,400
P3-B4-F(24)	28.78	11.10	10,400

Notes:

- --- Not measured.
- (1) Total Organic Compounds is the sum of the detected compounds and 50% of the detection limit for non-detected compounds for PNAs (8270 SIMS), SVOCs (8270), and VOCs (8260).
- (2) Total Petroleum Hydrocarbons (OA-2) by 3550B, 8015B for diesel, kerosene, mineral spirits, and motor oil and 50% of the detection limit for non-detected compounds.
- (3) The foc value for the 0 to 3 foot depth interval was obtained from soil boring B-817 at 2' 3' bgs.

 The foc value for the greater than 10 foot depth interval was obtained from soil boring B-851 from 19' 20' bgs.

Exceeds Site-Specific foc.


Table 5-13 Evaluation for Soil Attenuation Champaign Former MGP Ameren Illinois

	Total Organic		
	Compounds Using 50%	Total Petroleum	Site-Specific
Sample	of Detection Limit (1)	Hydrocarbons (2)	Soil $f_{oc}^{(3)}$
Identification	(mg/kg)	(mg/kg)	(mg/kg)
P3-C3-F(22)	946.90	44.32	10,400
P3-D2-F(22)	5321.48	1467.00	10,400
P3-C2-F(24)	474.01	200.62	10,400
P3-D2-F(24)	381.63	35.96	10,400
P3-C3-F(24)	80.26	22.55	10,400
P3-E3-F(24)	2494.33	682.50	10,400
P3-E3-F(25)	154.91	33.21	10,400
P3-DE1.5-F(23)	2271.16	52.91	10,400
P3-DE1-F(23)	1759.44	103.47	10,400
P3-F2-F(23)	29.21	648.60	10,400
P3-F2-F(25)	241.39	41.95	10,400
P3-H.1.5-F(23)	110.65	32.20	10,400
P4-B2-F(23)	1898.64	11.08	10,400
P4-B3-F(23)	603.97	11.30	10,400
P4-BC4-F(23)	52.67	31.82	10,400
P4-B2-F(25)	10,009.40	18.74	10,400
P4-B3-F(25)	1068.51	485.80	10,400
P4-BC4-F(25)	44.48	18.71	10,400
P4-D1.5-F (25)	28.26	10.88	10,400
P4-D3-F (25)	36.03	18.37	10,400
P4-D4.5-F (25)	981.10	49.71	10,400
P4-EF1.5-F (25)	71.52	26.10	10,400
P4-EF3-F (25)	87.30	11.12	10,400
P4-EF4.5-F (25)	56.64	17.15	10,400
P4-G4-F(24)	148.32		10,400
P4-G4-F(26)	74.16		10,400
P4-G3-F(24)	133.23		10,400
P4-G3-F(26)	85.79		10,400
P4-G2-F(24)	50.29		10,400
P4-G2-F(26)	121.90		10,400
P4-A1-W (20)	73,138.55	14,690	10,400
P5-B3.5-F(24)	32.04	14.06	10,400
P5-B3.5-F(26)	29.90	11.32	10,400
P5-B2-F(24)	2005.29	26.29	10,400
P5-B2-F(26)	683.06	133.29	10,400
P5-D2-F(25)	44.97	26.85	10,400
P5-D4-F(25)	45.81	22.57	10,400
P6-B4.5-F (25)	191.03	53.90	10,400
P6-D3-F(25)	107.30	66.71	10,400

Notes:

- --- Not measured.
- (1) Total Organic Compounds is the sum of the detected compounds and 50% of the detection limit for non-detected compounds for PNAs (8270 SIMS), SVOCs (8270), and VOCs (8260).
- (2) Total Petroleum Hydrocarbons (OA-2) by 3550B, 8015B for diesel, kerosene, mineral spirits, and motor oil and 50% of the detection limit for non-detected compounds.
- (3) The foc value for the 0 to 3 foot depth interval was obtained from soil boring B-817 at 2' 3' bgs.

 The foc value for the greater than 10 foot depth interval was obtained from soil boring B-851 from 19' 20' bgs.

Table 5-13 Evaluation for Soil Attenuation Champaign Former MGP Ameren Illinois

	Total Organic		
	Compounds Using 50%	Total Petroleum	Site-Specific
Sample	of Detection Limit (1)	Hydrocarbons (2)	Soil $f_{oc}^{(3)}$
Identification	(mg/kg)	(mg/kg)	(mg/kg)
P5-D2-F(25)	44.97	26.85	10,400
P5-D4-F(25)	45.81	22.57	10,400
P6-B4.5-F (25)	191.03	53.90	10,400
P6-D3-F(25)	107.30	66.71	10,400
P6-D3-F(26)	85.31	43.47	10,400
P6-D4.5-F(25)	76.55	35.99	10,400
P6-D4.5-F(26)	88.86	53.99	10,400
P7-GH1-F (16)	65.96	26.95	10,400
P7-G2-F (20)	64.47	27.08	10,400
P7-G2-F (16)	28.00	11.08	10,400
P7-F1-F (16)	56.56	17.47	10,400
P7-F1-F (20)	31.05	14.01	10,400
P7-B1.5-F (20)	50.38	<5.61	10,400
P7-B1.5-F (22)	50.25	<5.69	10,400
P7-B3.5-F (25)	65.05	16.15	10,400
P7-CD1-F (20)	70.65	<11.0	10,400
P7-CD1-F (22)	44.13	6.79	10,400
P7-CD3-F (25)	72.59	26.00	10,400
P7-E1-F (23)	48.06	15.53	10,400
P7-E23-F (23)	44.84	6.70	10,400
P8-G12-F (20 ft)	58.57	5.70	10,400
P8-G12-F (22 ft)	28.37	<5.54	10,400
P8-G3-F (20 ft)	55.70	6.81	10,400
P8-E1.2-F (20 ft)	67.36	12.30	10,400
P8-E3.4-F (20 ft)	53.49	<5.57	10,400
P8-E3.4-F (22 ft)	32.64	7.25	10,400
P8-E1.2-F (22 ft)	32.90	7.21	10,400
P9-G1.5-F (14 ft)	62.87	<5.63	10,400
P9-G1.5-F (16 ft)	47.37	<5.64	10,400
P9-G3-F (16.5)	44.46	<5.63	10,400
P9-G3-F (18)	45.25	<5.64	10,400
P9-FG 1.5-F (16)	40.24	16.80	10,400
P9-FG 1.5-F (18)	40.59	<5.62	10,400
P9-E3-F (16)	64.34	23.48	10,400
P9-E3-F (18)	32.49	7.09	10,400
P9-DE1.5-F (16)	289.64	16.80	10,400
P9-DE1.5-F (18)	132.35	6.15	10,400
P9-DE1.5-F (24)	243.59	5.64	10,400
P9-DE 1.5-F (26)	33.23	7.17	10,400
PA5-08 (3)		33,535	23,200
PA5-09 (3)		20,990	23,200
PA5-10 (3)		12,980	23,200

Notes:

- --- Not measured
- (1) Total Organic Compounds is the sum of the detected compounds and 50% of the detection limit for non-detected compounds for PNAs (8270 SIMS), SVOCs (8270), and VOCs (8260).
- (2) Total Petroleum Hydrocarbons (OA-2) by 3550B, 8015B for diesel, kerosene, mineral spirits, and motor oil and 50% of the detection limit for non-detected compounds.
- (3) The foc value for the 0 to 3 foot depth interval was obtained from soil boring B-817 at 2' 3' bgs.

 The foc value for the greater than 10 foot depth interval was obtained from soil boring B-851 from 19' 20' bgs.

Exceeds Site-Specific foc.

Table 5-14 Groundwater Analytical Data for BTEX, PAHs and Cyanide Comparison to Class I and Class II Groundwater Standards December 2012 Champaign Former MGP Site Champaign, Illinois

	Class I	Class II		UMW-102	UMW-105	UMW-106R	UMW-107	UMW-108	UMW-109	UMW-111A	UMW-116	UMW-117	UMW-118	UMW-119
CONSTITUENT	Groundwater Standard		Units	12/13/2012	12/11/2012	12/12/2012	12/11/2012	12/12/2012	12/13/2012	12/12/2012	12/11/2012	12/12/2012	12/13/2012	12/13/2012
Volatile Organic Compounds	Groundwater Standard	Groundwater Standard	Ointo	12/10/2012	12/11/2012	12/12/2012	12/11/2012	12,12,2012	12/10/2012	12/12/2012	12/11/2012	12/12/2012	12/10/2012	12/10/2012
(8260B)														
Benzene	0.005	0.025	mg/L	< 0.002	< 0.002	<0.002	0.1850	<0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002
Ethylbenzene	0.70	1.00	mg/L	< 0.005	<0.005	<0.005	<0.05	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Toluene	1.0	2.5	mg/L	< 0.005	< 0.005	<0.005	< 0.05	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Xylene (total)	10.0	10.0	mg/L	<0.005	<0.005	<0.005	0.011	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Polynuclear Aromatic														
<u>8270 SIMS</u>														
Acenaphthene	0.42	2.10	mg/L	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Acenaphthylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	<0.0001	<0.0001	0.00023	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Anthracene	2.1	10.5	mg/L	<0.0001	<0.0001	<0.0001	0.00018	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(a)anthracene	0.00013	0.00065	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(a)pyrene	0.0002	0.0020	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Benzo(b)fluoranthene	0.00018	0.00900	mg/L	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Benzo(g,h,i)perylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Benzo(k)fluoranthene	0.00017	0.00085	mg/L	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Chrysene	0.0015	0.0075	mg/L	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Dibenzo(a,h)anthracene	0.0003	0.0015	mg/L	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Fluoranthene	0.28	1.40	mg/L	<0.0001	0.00024	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Fluorene	0.28	1.40	mg/L	< 0.0001	0.00024	<0.0001	0.00009	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Indeno(1,2,3-cd)pyrene	0.00043	0.00215	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001
Naphthalene	0.14	0.22	mg/L	<0.0001	<0.0001	0.0001	0.0186	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	0.0001	<0.0001
Phenanthrene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	0.00135	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Pyrene	0.21	1.05	mg/L	<0.0001	0.00012	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cyanide (total) 9012A	0.20	0.60	mg/L	<0.007	0.111	0.052	0.770	0.036	0.02	< 0.007	<0.007	<0.007	0.048	0.037

Notes:

Constituent exceeds Class I Groundwater Standards. Constituent exceeds Class II Groundwater Standards.

Table 5-14 GW Analytical December 2012.xlsx

^{*} Shallow groundwater (UMW-100 series wells) is defined as Class II groundwater and intermediate groundwater (UMW-300 series wells) is defined as Class I groundwater as defined in IAC 35 Part 620.210 and 620.220.

⁽¹⁾ Non-TACO or provisional ROs published by the IEPA.

Well UMW-122 had insufficient water volume to collect a sample.

mg/L Milligrams per liter

<0.0001 Not detected at the detection limit identified.

Table 5-14 Groundwater Analytical Data for BTEX, PAHs and Cyanide Comparison to Class I and Class II Groundwater Standards December 2012 Champaign Former MGP Site Champaign, Illinois

	Class I	Class II		UMW-120	UMW-121	UMW-123	UMW-124	UMW-125	UMW-126	UMW-127	UMW-300	UMW-301R	UMW-302	UMW-303	UMW-304R
CONSTITUENT	Groundwater Standard	Groundwater Standard	Units	12/13/2012	12/11/2012	12/12/2012	12/11/2012	12/11/2012	12/10/2012	12/11/2012	12/13/2012	12/12/2012	12/11/2012	12/12/2012	12/11/2012
Volatile Organic Compounds															
<u>(8260B)</u>															
Benzene	0.005	0.025	mg/L	< 0.002	<0.002	<0.002	0.085	0.0299	<0.002	0.0072	<0.002	<0.002	0.385	<0.002	0.0006
Ethylbenzene	0.70	1.00	mg/L	< 0.005	<0.005	<0.005	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.512	<0.005	<0.005
Toluene	1.0	2.5	mg/L	<0.005	<0.005	<0.005	0.0271	<0.005	<0.005	0.0014	<0.005	<0.005	0.01	<0.005	<0.005
Xylene (total)	10.0	10.0	mg/L	<0.005	<0.005	<0.005	0.0131	<0.005	<0.005	0.0018	<0.005	0.0015	0.211	<0.005	0.0018
Polynuclear Aromatic															
8270 SIMS															
Acenaphthene	0.42	2.10	mg/L	<0.0001	<0.0001	<0.0001	0.00027	<0.0001	<0.0001	0.00029	<0.0001	0.00114	0.00017	<0.0001	0.0004
Acenaphthylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	<0.0001	<0.0001	0.00016	<0.0001	<0.0001	0.00837	<0.0001	0.00202	0.00054	<0.0001	0.00126
Anthracene	2.1	10.5	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	0.00011	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(a)anthracene	0.00013	0.00065	mg/L	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(a)pyrene	0.0002	0.0020	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(b)fluoranthene	0.00018	0.00900	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(g,h,i)perylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Benzo(k)fluoranthene	0.00017	0.00085	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Chrysene	0.0015	0.0075	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Dibenzo(a,h)anthracene	0.0003	0.0015	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Fluoranthene	0.28	1.40	mg/L	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Fluorene	0.28	1.40	mg/L	<0.0001	<0.0001	<0.0001	0.00015	<0.0001	<0.0001	0.00019	< 0.0001	< 0.0001	0.00016	<0.0001	<0.0001
Indeno(1,2,3-cd)pyrene	0.00043	0.00215	mg/L	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001
Naphthalene	0.14	0.22	mg/L	< 0.0001	0.00056	<0.0001	0.0169	0.00126	< 0.0001	0.00353	< 0.0001	0.00147	4.2	<0.0001	0.00306
Phenanthrene	0.21 (1)	1.05 ⁽¹⁾	mg/L	< 0.0001	<0.0001	<0.0001	0.00017	0.00013	<0.0001	0.00031	<0.0001	<0.0001	<0.0001	<0.0001	0.00026
Pyrene	0.21	1.05	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cyanide (total) 9012A	0.20	0.60	mg/L	<0.007	0.374	<0.007	0.005	0.021	<0.007	<0.007	<0.007	<0.007	0.139	<0.007	0.033

Notes:

Well UMW-122 had insufficient water volume to collect a sample.

Constituent exceeds Class I Groundwater Standards. Constituent exceeds Class II Groundwater Standards.

mg/L Milligrams per liter

<0.0001 Not detected at the detection limit identified.

Page 2 of 3 Table 5-14 GW Analytical December 2012.xlsx

^{*} Shallow groundwater (UMW-100 series wells) is defined as Class II groundwater and intermediate groundwater (UMW-300 series wells) is defined as Class I groundwater as defined in IAC 35 Part 620.210 and 620.220.

(1) Non-TACO or provisional ROs published by the IEPA.

Table 5-14 Groundwater Analytical Data for BTEX, PAHs and Cyanide Comparison to Class I and Class II Groundwater Standards December 2012 Champaign Former MGP Site Champaign, Illinois

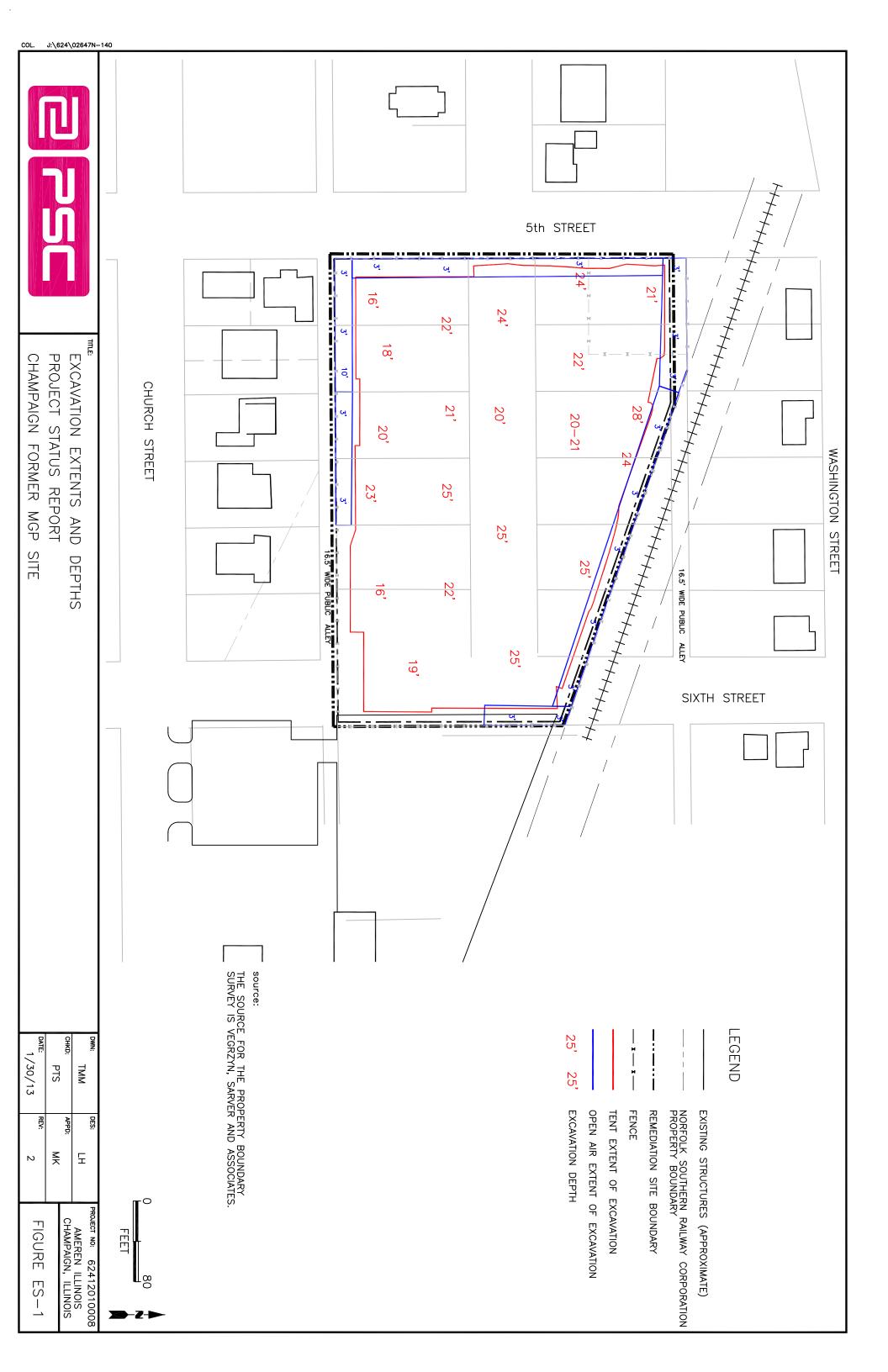
			-		I		1000/005	
CONSTITUENT	Class I Groundwater Standard	Class II Groundwater Standard	Units	UMW-305 12/12/2012	UMW-305 DUP 12/12/2012	UMW-306 12/12/2012	UMW-307 12/12/2012	UMW-308 12/12/2012
Volatile Organic Compounds	distributed standard	Groundwater Standard	Oilits	12/12/2012	12/12/2012	12/12/2012	12/12/2012	12/12/2012
(8260B)								
Benzene	0.005	0.025	mg/L	< 0.002	<0.002	< 0.002	<0.002	< 0.002
Ethylbenzene	0.70	1.00	mg/L	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Toluene	1.0	2.5	mg/L	< 0.005	<0.005	< 0.005	< 0.005	<0.005
Xylene (total)	10.0	10.0	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Polynuclear Aromatic 8270 SIMS								
Acenaphthene	0.42	2.10	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Acenaphthylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Anthracene	2.1	10.5	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Benzo(a)anthracene	0.00013	0.00065	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Benzo(a)pyrene	0.0002	0.0020	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Benzo(b)fluoranthene	0.00018	0.00900	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Benzo(g,h,i)perylene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Benzo(k)fluoranthene	0.00017	0.00085	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Chrysene	0.0015	0.0075	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Dibenzo(a,h)anthracene	0.0003	0.0015	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Fluoranthene	0.28	1.40	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Fluorene	0.28	1.40	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001
Indeno(1,2,3-cd)pyrene	0.00043	0.00215	mg/L	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Naphthalene	0.14	0.22	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	0.00209
Phenanthrene	0.21 (1)	1.05 ⁽¹⁾	mg/L	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001
Pyrene	0.21	1.05	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Cyanide (total) 9012A	0.20	0.60	mg/L	0.023	0.025	0.019	0.071	0.03

* Shallow groundwater (UMW-100 series wells) is defined as Class II groundwater and intermediate groundwater (UMW-300 series wells) is defined as Class I groundwater as defined in IAC 35 Part 620.210 and 620.220.

(1) Non-TACO or provisional ROs published by the IEPA.

Well UMW-122 had insufficient water volume to collect a sample.

Constituent exceeds Class I Groundwater Standards. Constituent exceeds Class II Groundwater Standards.

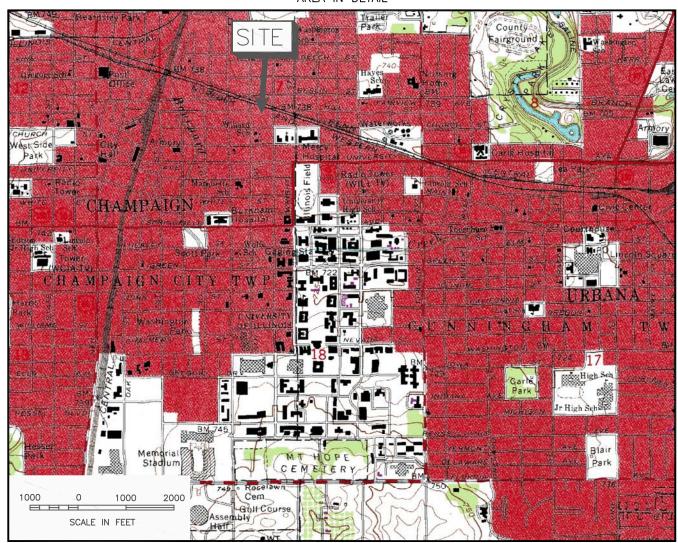

mg/L Milligrams per liter

<0.0001 Not detected at the detection limit identified.

Page 3 of 3 Table 5-14 GW Analytical December 2012.xlsx

List of Figures

Figure Number	Figure Name
ES-1	Excavation Extents and Depths
1-1	Site Location Map
1-2	Remediation Site Map
1-3	Historical Site Features
2-1	Estimated Horizontal Extent of Soil Impact Above Tier 1 Remedial Objectives
3-1	Excavation Extents and Depths
4-1	Tent Phase Locations and Perimeter Excavation and Sample Locations
4-2	ISCO Pilot Study Area and Post-ISCO Sample Locations
4-3	Groundwater Monitoring Well Location Map
5-1	Confirmation Wall Samples Exceeding Tier 1 Remedial Objectives For Depth Intervals of 0 to 3 Foot BGS
5-2	Confirmation Wall Samples Exceeding Tier 1 Remedial Objectives For Depth Intervals of 3 to 10 Feet BGS
5-3	Confirmation Wall and Floor Samples Exceeding Tier 1 Remedial Objectives For Depth Intervals of Greater Than 10 Feet BGS
7-1	Proposed ISCO Treatment Areas


ILLINOIS

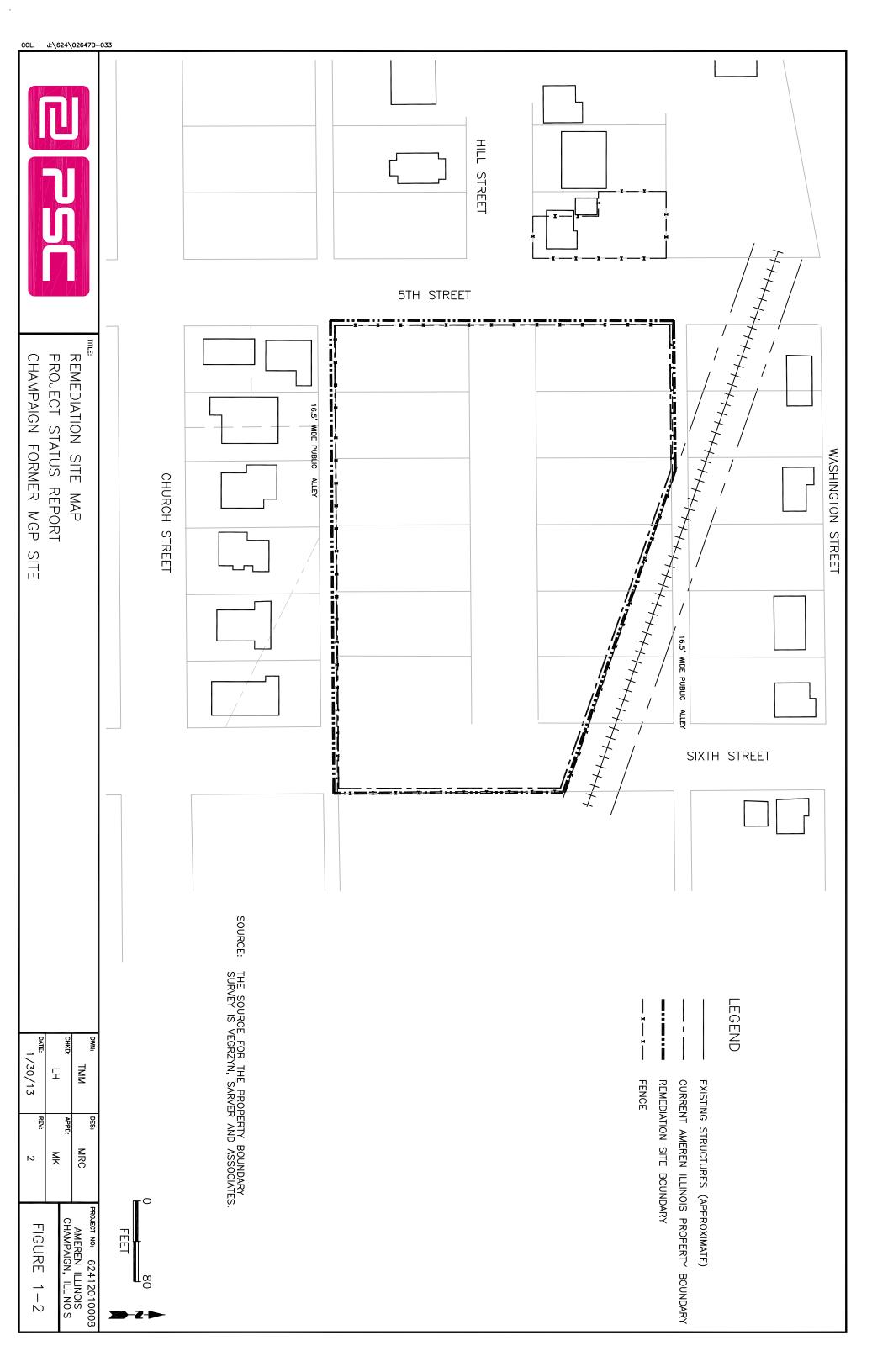
CHAMPAIGN COUNTY

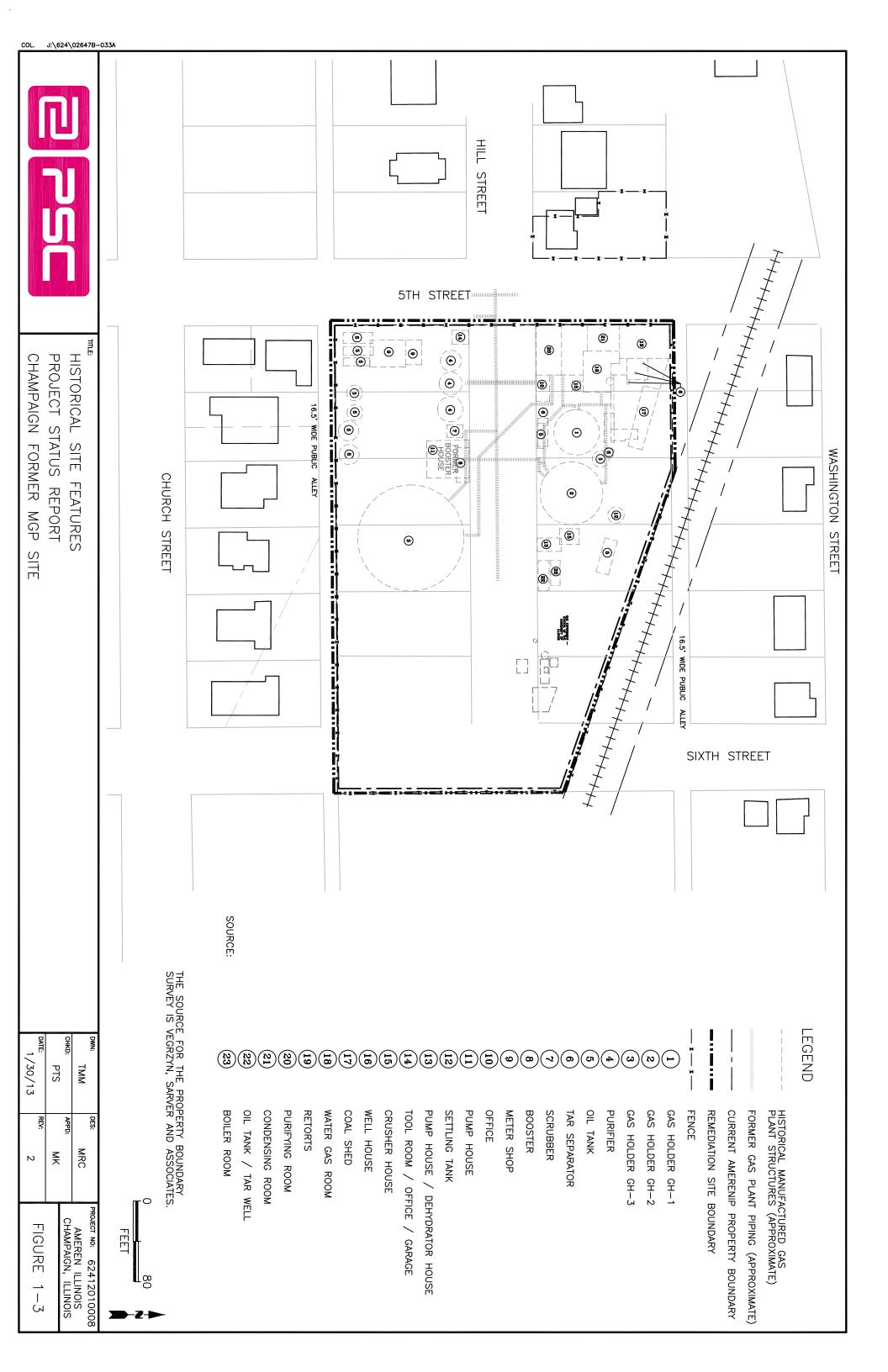
AREA IN DETAIL

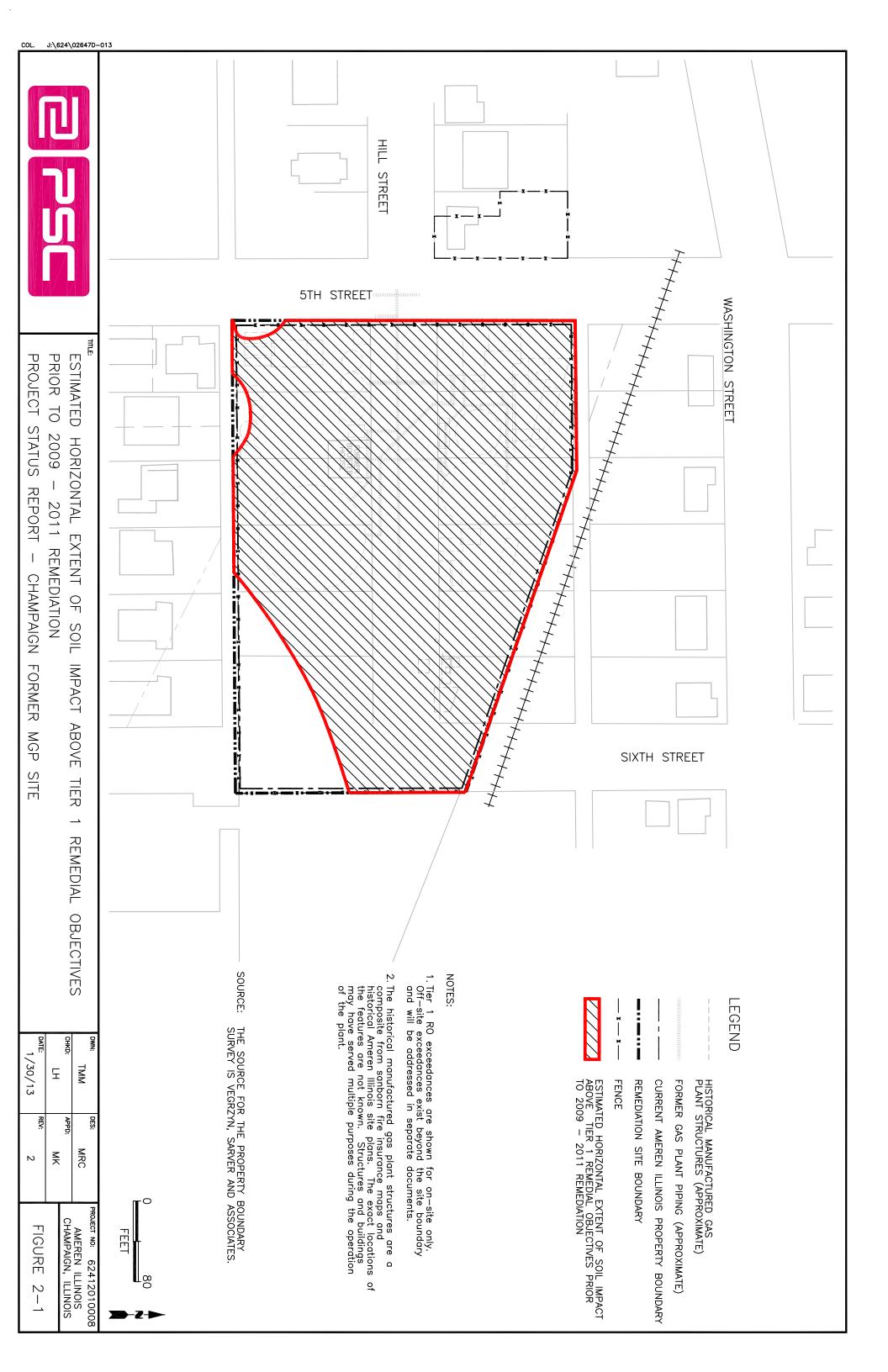
Modified from U.S. Geological Survey, Urbana, Illinois, quadrangle, Photorevised 1975.

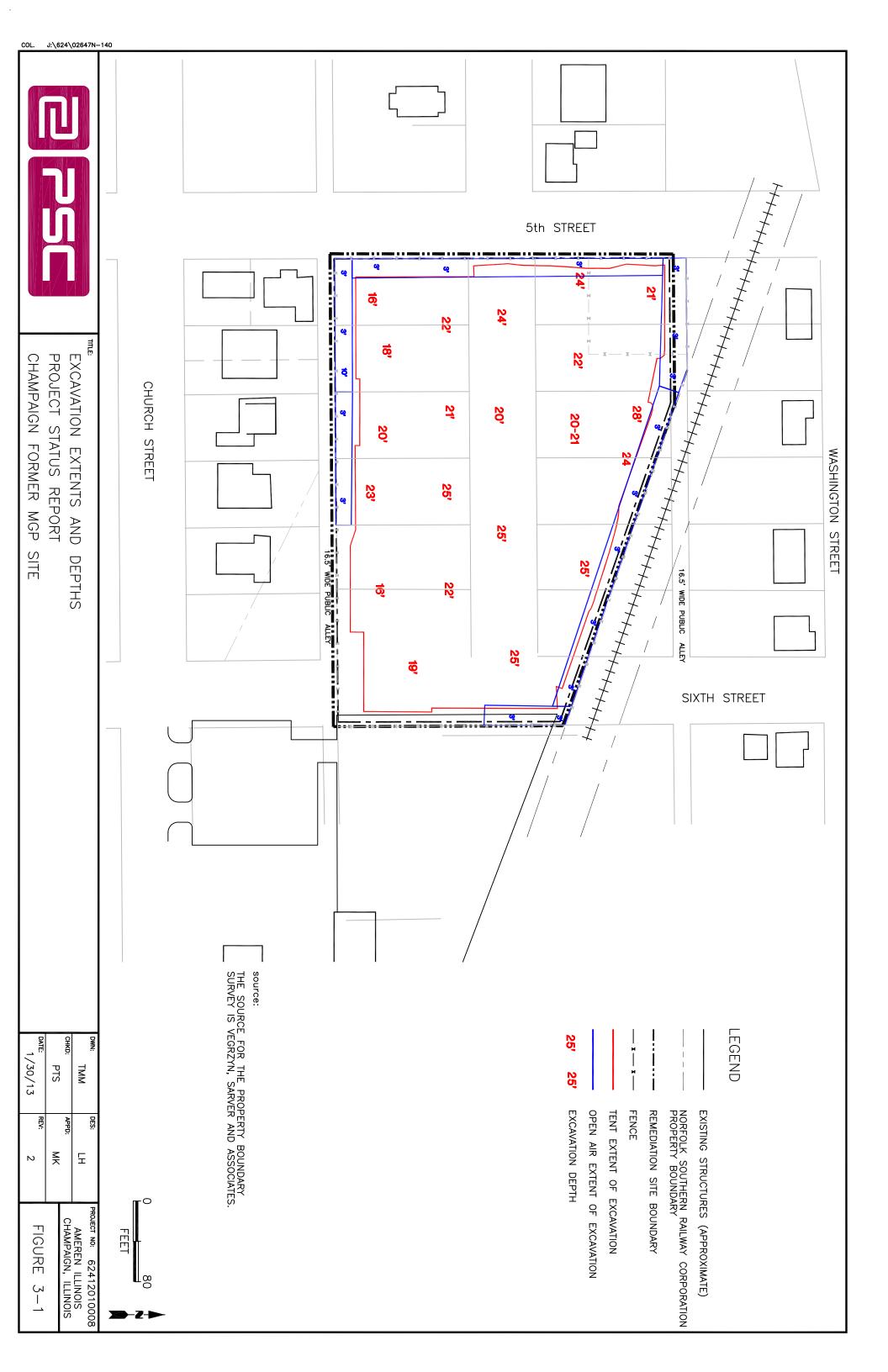
SCALE IS VARIABLE

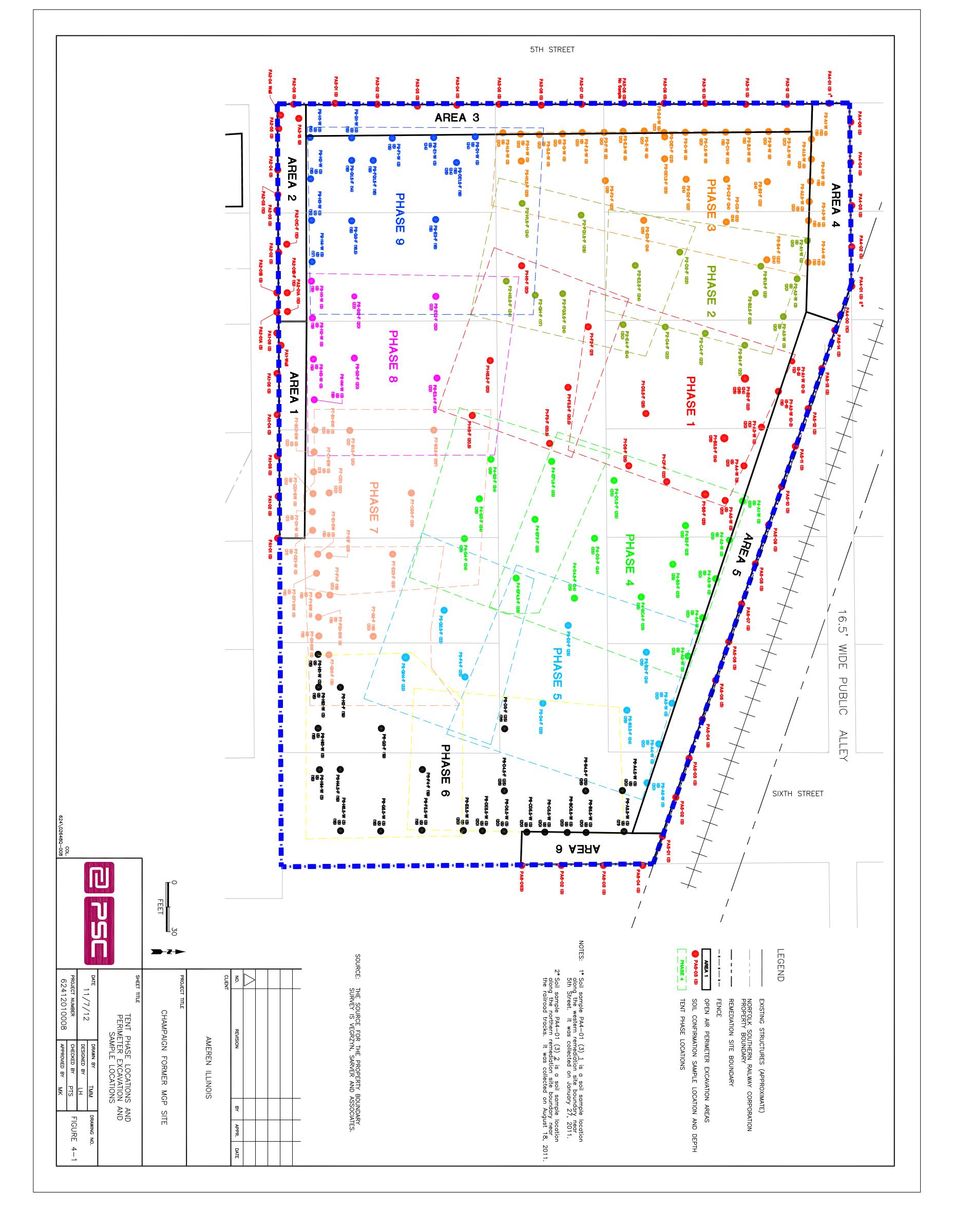
TITLE:

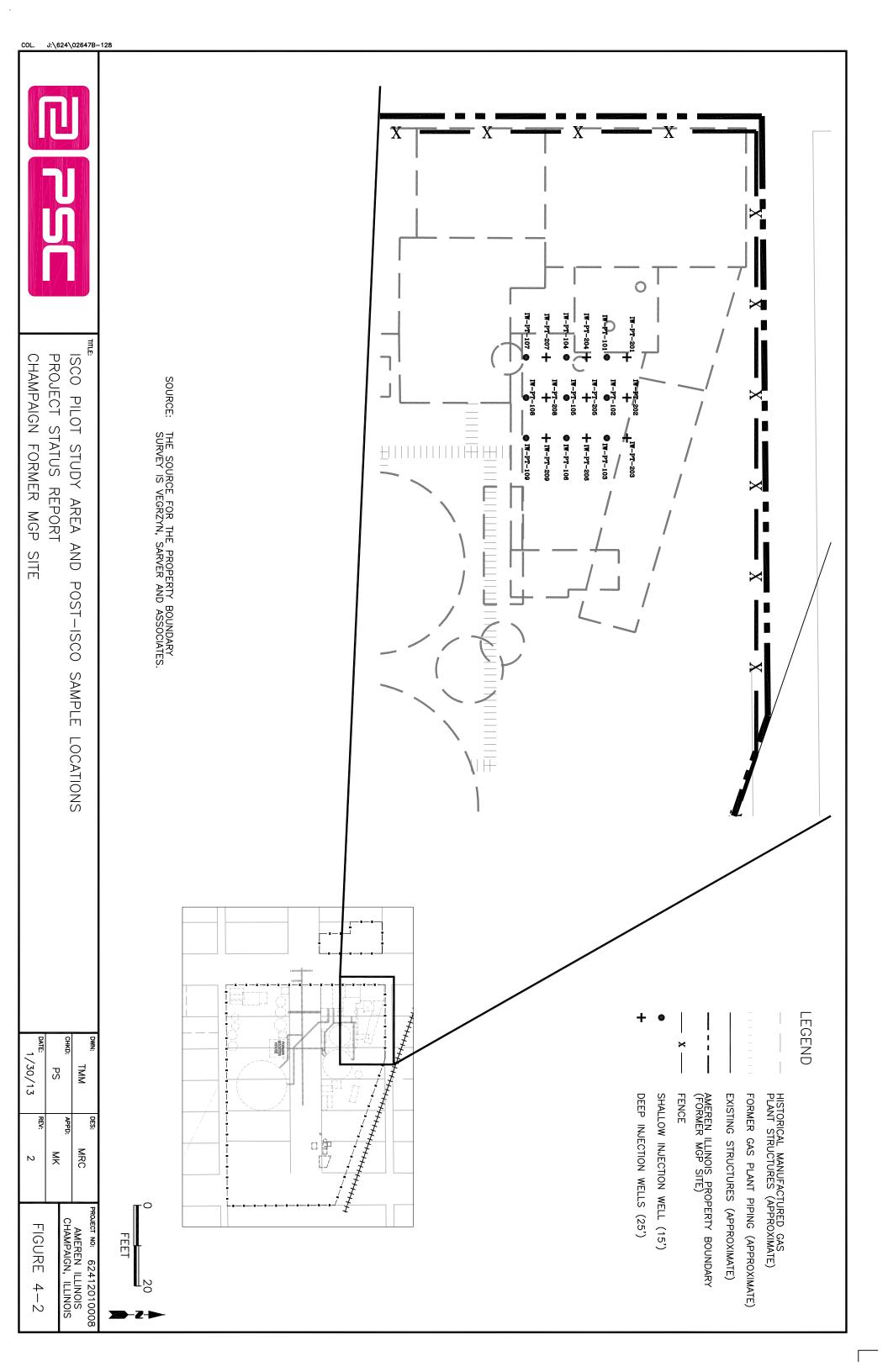

SITE LOCATION MAP
PROJECT STATUS REPORT
CHAMPAIGN FORMER MGP SITE

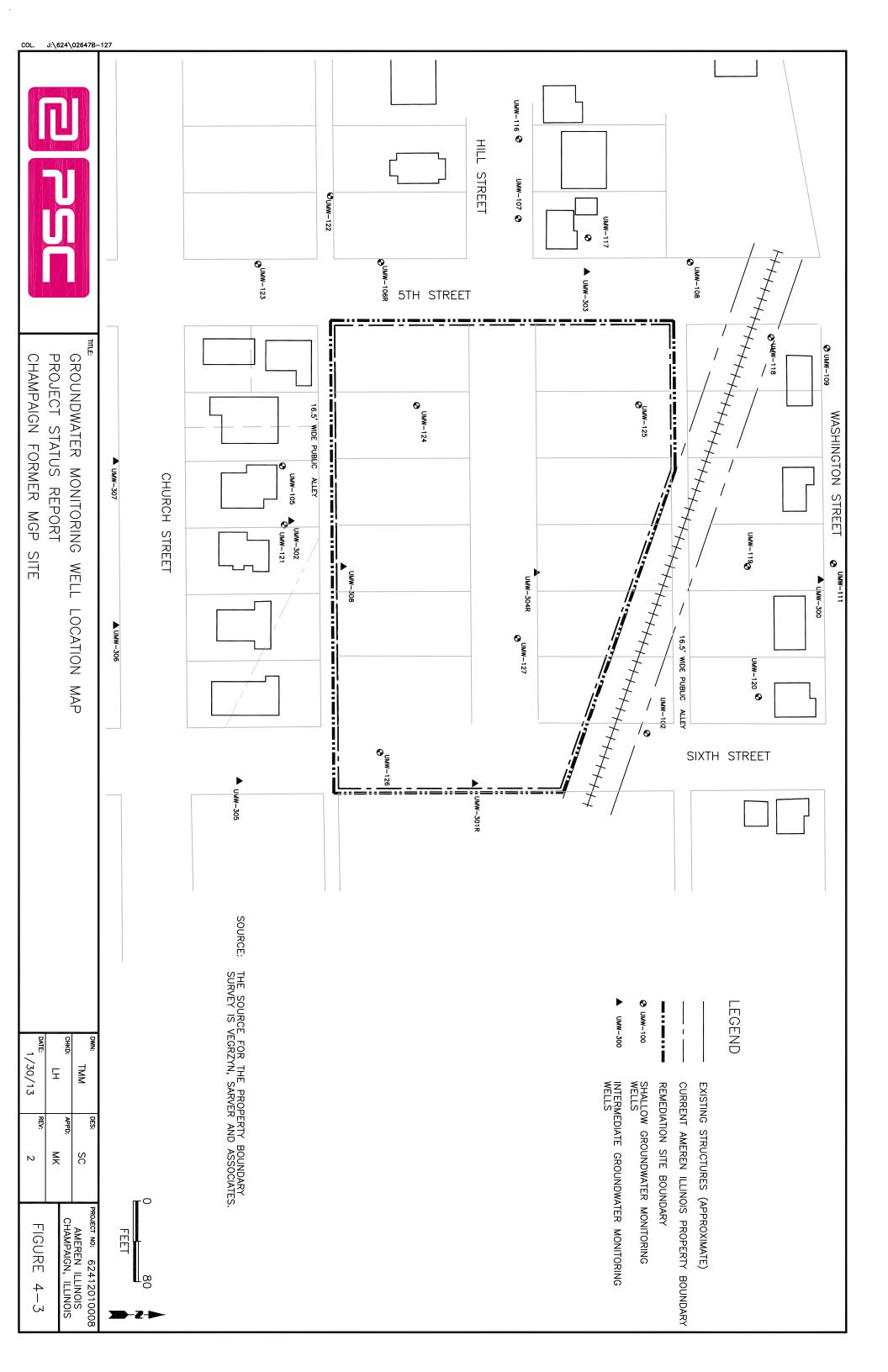

DWN:	DES.:
TMM	SPB
CHKD:	APPD:
LH	MK
DATE:	REV.:
1/30/13	2

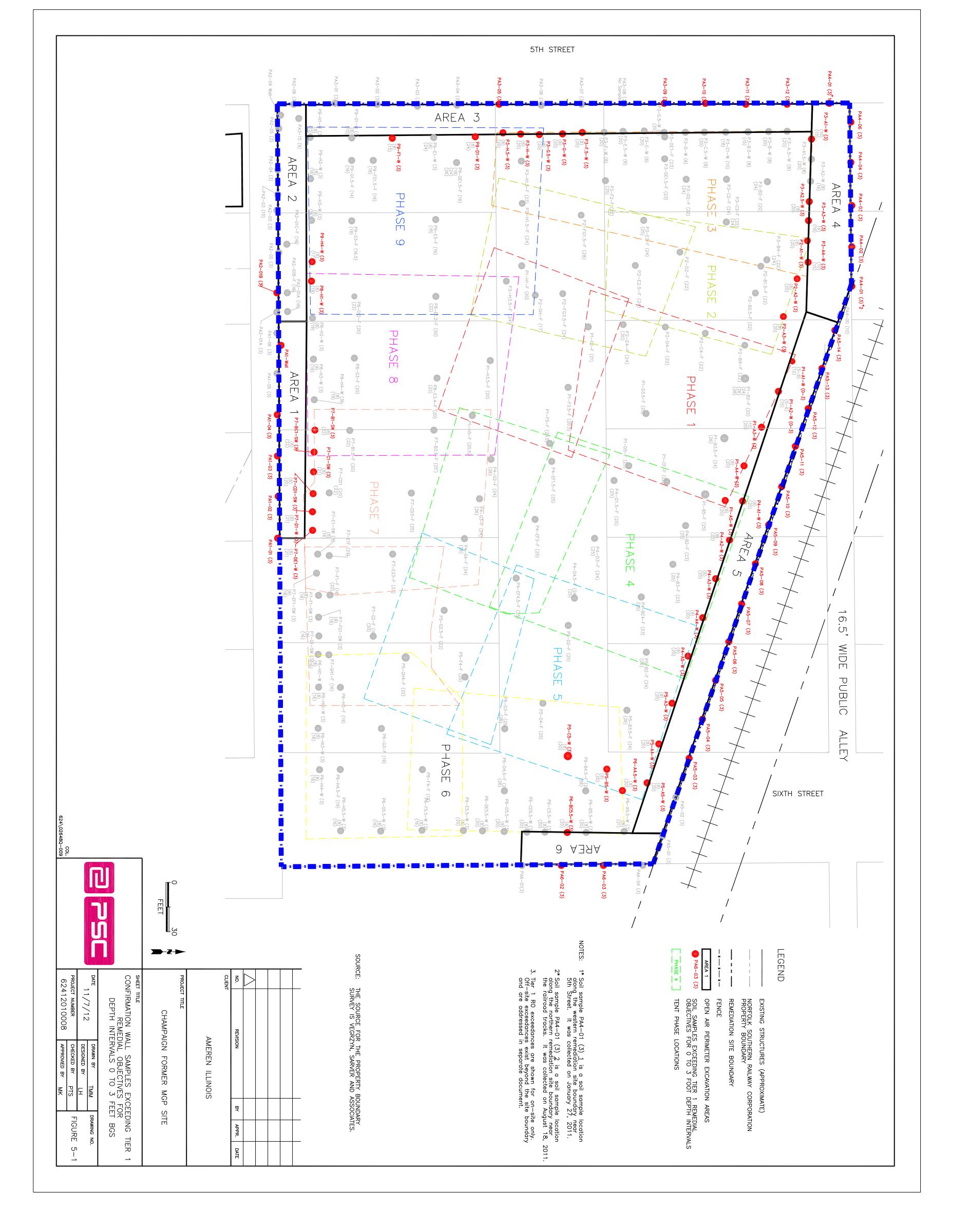

PROJECT NO.: 62412010008

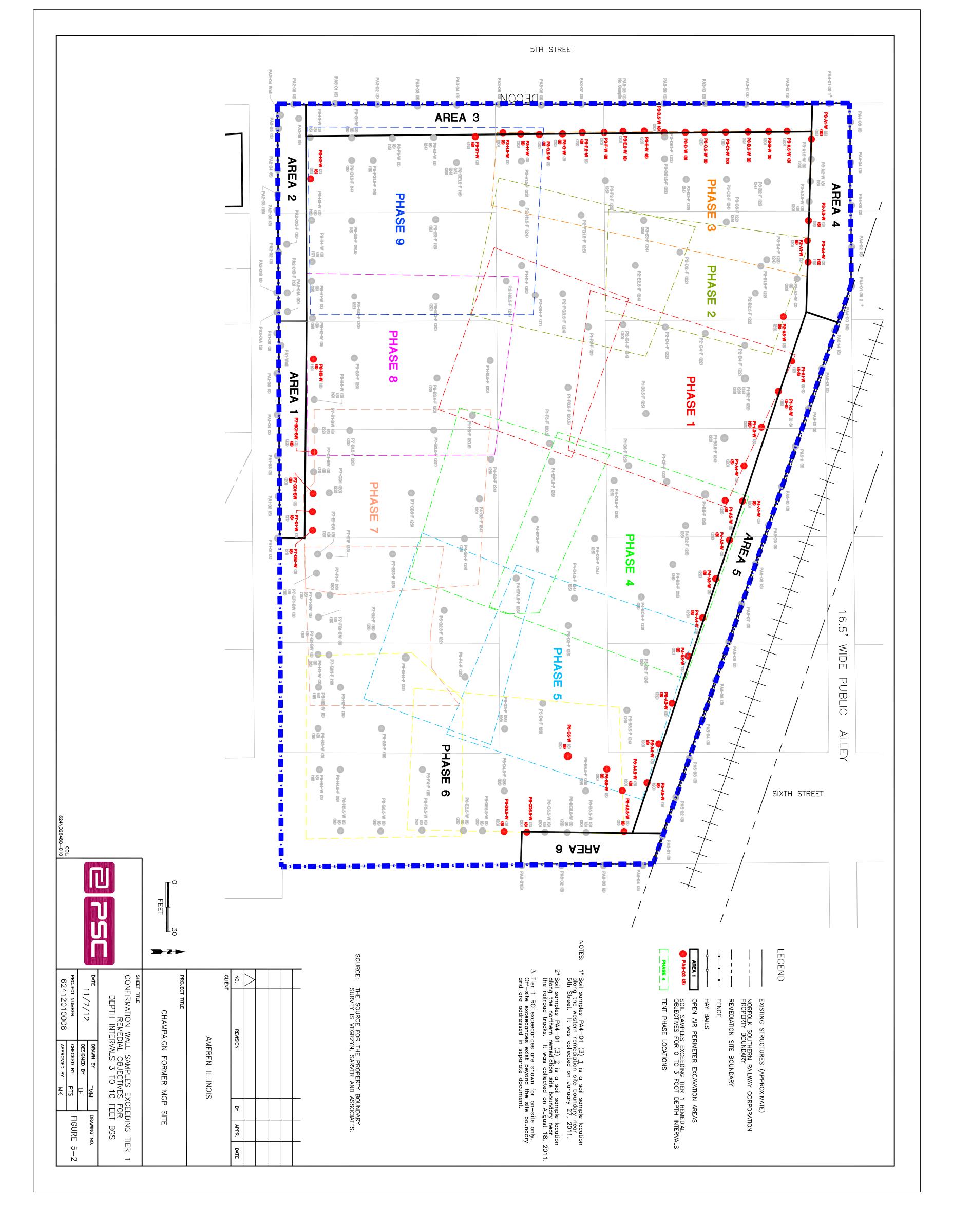

AMEREN ILLINOIS
CHAMPAIGN, ILLINOIS

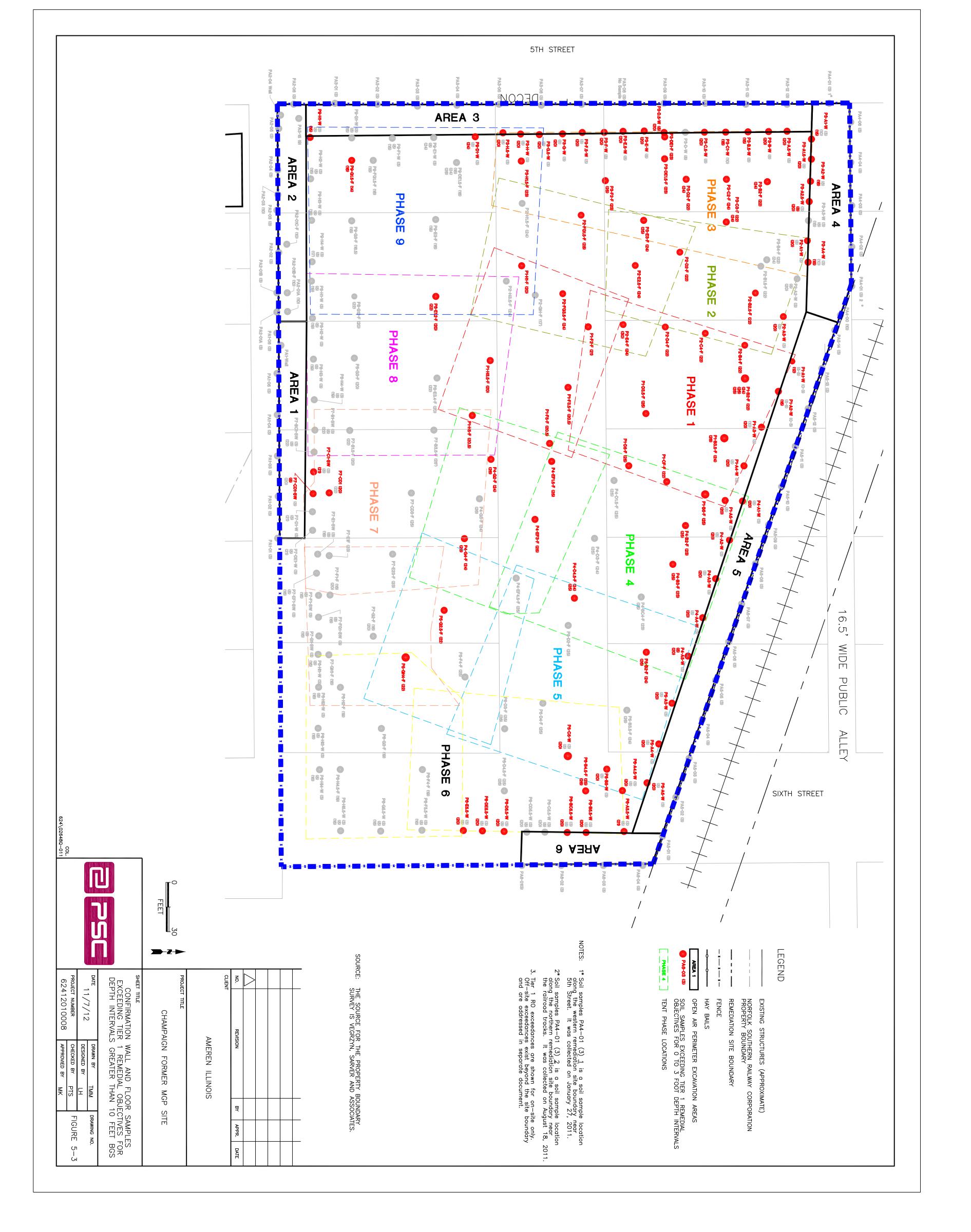

FIGURE 1-1

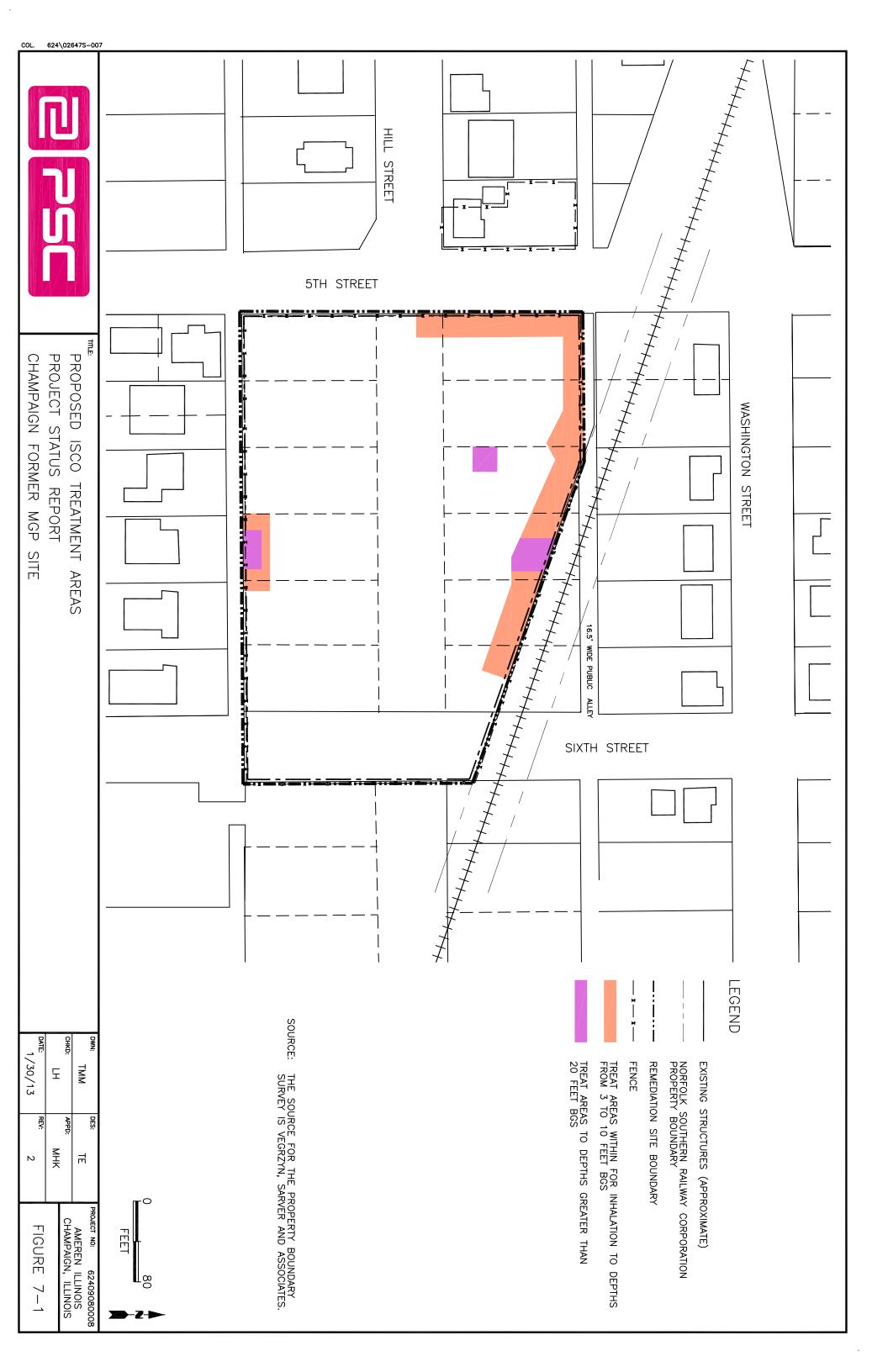












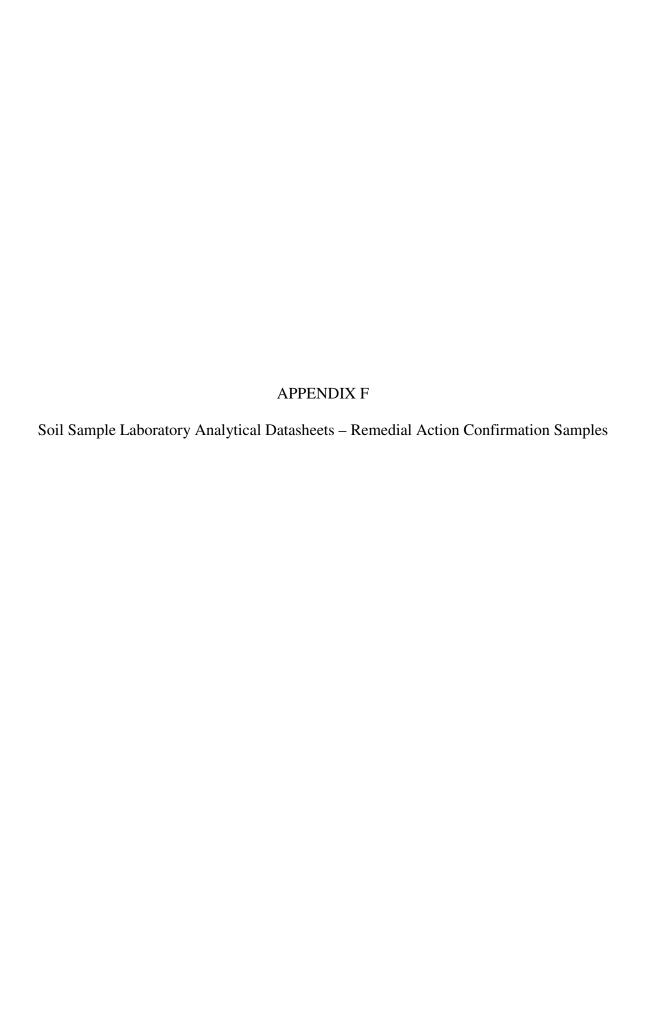
APPENDIX A

Wastewater Laboratory Analytical Datasheets

APPENDIX B

Soil Sample Laboratory Analytical Datasheets - Backfill

APPENDIX C


Analytical Results of ISCO Pilot Study

APPENDIX D

Well Construction and Well Abandonment Forms

APPENDIX E

Field Hydraulic Conductivity Testing Datasheets

APPENDIX G Soil Sample Laboratory Analytical Datasheets – Remedial Action Perimeter Samples