REPORT

2024 Annual Groundwater Monitoring and Corrective Action Report

SCPD Surface Impoundment, Sioux Energy Center, St. Charles County, Missouri, USA

January 31, 2025

Project Number: 23009-24

Submitted to:

Ameren Missouri 1901 Chouteau Avenue St. Louis, Missouri 63103

Submitted by:

Rocksmith Geoengineering, LLC 2320 Creve Coeur Mill Rd Maryland Heights, MO 63043

Project Number: 23009-24

EXECUTIVE SUMMARY AND STATUS OF THE SCPD GROUNDWATER MONITORING PROGRAM

This annual report was developed to meet the requirements of United States Environmental Protection Agency (USEPA) 40 CFR Part 257 "Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Final Rule" (the CCR Rule). The CCR Rule requires owners or operators of existing CCR units to produce an Annual Groundwater Monitoring and Corrective Action Report (Annual Report) each year (§ 257.90(e)). Ameren Missouri (Ameren) has determined that the SCPD Coal Combustion Residuals (CCR) Surface Impoundment at the Sioux Energy Center (SEC) is subject to the requirements of the CCR Rule. This Annual Report for the SCPD describes CCR Rule groundwater monitoring activities from January 1, 2024 through December 31, 2024.

The SCPD began receiving CCR waste on December 14, 2022. Throughout 2024, the SCPD CCR unit has been operating under the Detection Monitoring Program (§257.94), with the first Detection Monitoring sampling event beginning on May 2, 2023. As a part of Detection Monitoring, statistical evaluations are completed after each sampling event to determine if there are any values that represent a Statistically Significant Increase (SSI) over background concentrations. SSIs were determined during each sampling event in 2024, and a summary of the SSIs for the past year is provided in **Table 1**.

Table 1 - Summary of 2024 SCPD Sampling Events, Previous Year Verification, and Statistical Evaluations

Event Name	Type of Event and Sampling Dates	Laboratory Analytical Data Receipt	Parameters Collected	Verified SSIs	SSI Determination Date	ASD Completion Date
2023 Sampling Event	Detection Monitoring, November 10-13, 2023	December 27, 2023	Appendix III, Major Cations and Anions	Boron: UG-2	March 26,	June 24,
November 2023 Event	Verification Sampling, February 7, 2024	February 23, 2024	Detected Appendix III parameters ^{(See} Note 1)	<u>Sulfate:</u> TMW-5	2024	2024
npling Event	Detection Monitoring, May 28-29, 2024	July 9, 2024	Appendix III, Major Cations and Anions	Chloride: TMW-6	October 7,	
May 2024 Sampling Event	Verification Sampling, July 29, 2024	August 12, 2024	Detected Appendix III parameters	Sulfate: TMW-4, TMW-5	2024	January 3, 2025
November 2024 Sampling Event	Detection Monitoring, November 14-20, 2024	December 24, 2024	Appendix III, Major Cations and Anions	To be determined after statistical ar complete	nalysis and Verificat d in 2025.	ion Sampling are

Notes:

- 1) Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 2) SSI Statistically Significant Increase.
- 3) ASD Alternative source demonstration.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSI was the result of an alternative source or

i

Project Number: 23009-24

resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. Alternative Source Demonstrations (ASDs) were prepared for each sampling event and are discussed further in this Annual Report.

There were no changes made to the monitoring system in 2024 with no new wells being installed or decommissioned.

Table of Contents

1.0	Installation or Decomissioning of Monitoring Wells	1
2.0	Groundwater Sampling Results and Discussion	1
2.1	Detection Monitoring Program	1
2.2	Groundwater Elevation, Flow Rate and Direction	2
2.3	Sampling Issues	2
3.0	Activities Planned for 2025	2

TABLES

Table 1 - Summary of 2024 SCPD Sampling Events, Previous Year Verification, and Statistical Evaluations (in text)

Table 2 - Summary of Groundwater Sampling Dates (in text)

Table 3 - November 2023 Detection Monitoring Results

Table 4 - May 2024 Detection Monitoring Results

Table 5 - November 2024 Detection Monitoring Results

FIGURES

Figure 1 - Sioux Energy Center Groundwater Monitoring Programs and Sample Location Map

APPENDICES

Appendix A - Laboratory Analytical Data

Appendix B - Alternative Source Demonstration - November 2023 Sampling Event

Appendix C - Alternative Source Demonstration - May 2024 Sampling Event

Appendix D - 2024 Potentiometric Surface Maps

Project Number: 23009-24

1.0 INSTALLATION OR DECOMISSIONING OF MONITORING WELLS

In accordance with the CCR Rule, a groundwater monitoring system has been installed to monitor the SCPD. The groundwater monitoring system consists of six groundwater monitoring wells screened in the uppermost aquifer and is displayed in **Figure 1** and is listed on **Table 2**, below. No new monitoring wells were installed or decommissioned in 2024 as a part of the CCR Rule monitoring program for the SCPD. For more information on the groundwater monitoring network, details are provided in the previous Annual Groundwater Monitoring Reports for the SCPD.

2.0 GROUNDWATER SAMPLING RESULTS AND DISCUSSION

The following sections discuss the sampling events completed for the SCPD CCR Unit in 2024. **Table 2** below provides a summary of the groundwater samples collected in 2024 including the number of samples, the date of sample collection, and the monitoring program for which the samples were collected.

Table 2 - Summary of Groundwater Sampling Dates

		Gı	oundwater M	onitoring We	lls			
Sampling Event	BMW-1S	BMW-3S	UG-2	TMW-4	TMW-5	TMW-6	Monitoring Program	
			Date of Samp	ole Collection				
February 2024 Verification Sampling	-	-	2/7/2024	-	2/7/2024	-	Detection	
May 2024 Sampling Event	5/28/2024	5/28/2024	5/28/2024	5/29/2024	5/29/2024	5/29/2024	Detection	
July 2024 Verification Sampling	-	-	-	7/29/2024	7/29/2024	7/29/2024	Detection	
November 2024 Sampling Event	11/20/2024	11/20/2024	11/14/2024	11/19/2024	11/19/2024	11/19/2024	Detection	
Total Number of Samples Collected	2	2	3	3	4	3	NA	

Notes:

- 1) Detection Monitoring events tested for Appendix III Parameters.
- 2) Only analytes/wells that were detected above the prediction limit were tested during verification sampling.
- 3) "-" No sample collected.
- 4) NA Not applicable.

2.1 Detection Monitoring Program

A Detection Monitoring sampling event was completed November 10-13, 2023. Verification sampling and the statistical analysis to evaluate for SSIs for the November 2023 event were not completed until 2024 and are included in the report. Detections above respective prediction limits for some Appendix III analytes triggered a verification sampling event, which was completed February 7, 2024, and verified two SSIs. **Table 3** summarizes the results and statistical analysis of the November 2023 Detection Monitoring event. Laboratory analytical data

Project Number: 23009-24

from the 2024 sampling events are provided in **Appendix A**. Laboratory Analytical data for the November 2023 Detection Monitoring event are provided in the 2023 Annual Report for the SCPD.

As outlined in section 257.94(e)(2) of the CCR Rule, the owner or operator may demonstrate that a source other than the CCR unit has caused an SSI and that the apparent SSI was the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality. An ASD was completed for the November 2023 SSIs and is provided in **Appendix B**. This ASD demonstrates that the SSIs at monitoring wells UG-2 and TMW-5 are not caused by the SCPD CCR Unit, and therefore, the SCPD CCR Unit remains in Detection Monitoring.

Detection Monitoring samples were collected May 28-29, 2024, and testing was completed for all Appendix III analytes, as well as major cations and anions. Detections above respective prediction limits for some Appendix III analytes triggered a verification sampling event, which was completed July 29, 2024, and verified three SSIs. **Table 4** summarizes the results and statistical analysis of the May 2024 Detection Monitoring event. Laboratory analytical data from this sampling event is included in **Appendix A**. Similar to previous results, SSIs in the monitoring well network are not caused by the SCPD CCR unit, as demonstrated by the ASD provided in **Appendix C**.

A Detection Monitoring sampling event was completed November 14-20, 2024, and testing was completed for all Appendix III analytes, as well as major cations and anions. The statistical analysis to evaluate for SSIs in the November 2024 data was not completed in 2024 and the results will be provided in the 2025 Annual Report. **Table 5** summarizes the results of the November 2024 Detection Monitoring event and laboratory analytical data are provided in **Appendix A**.

2.2 Groundwater Elevation, Flow Rate and Direction

To meet the requirements of §257.93(c), water level measurements were taken at all monitoring wells prior to the start of groundwater purging and sampling. Static water levels were measured within a 24-hour period in each monitoring well using an electronic water level indicator.

Groundwater elevations were used to generate potentiometric surface maps included in **Appendix D**. As shown on the potentiometric surface maps, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Mississippi and Missouri Rivers, which affect water levels, gradients and flow directions in these water bodies. Groundwater in the alluvial aquifer will generally flow from the higher of the two rivers toward the lower elevation river. Water flows into and out of the alluvial aquifer as a result of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. At this facility, groundwater can flow north and south toward the Mississippi and Missouri Rivers, depending on river levels, as was observed in May 2024 where groundwater flows north.

Groundwater flow direction and hydraulic gradient at the SEC were estimated for the alluvial aquifer wells using commercially available software to evaluate data since 2016. Results indicate that groundwater flow direction at the SEC is variable due to fluctuating river levels but has most often flowed from north to south. The overall net groundwater flow direction in the alluvial aquifer at the SEC was south-southeast in 2024 as a result of river levels in the Missouri and Mississippi Rivers. From 2016 through 2022, horizontal gradients ranged from 0.00006 to 0.001 feet/foot with an estimated net annual groundwater movement of approximately four feet per year in the prevailing downgradient direction. From July 2022 to February 2024, due to relatively low Missouri River levels, there was a more prevalent southward flow direction at a rate of approximately 43 feet per year. Based on water levels collected beginning in May 2024 throughout the rest of the year, groundwater flow varied north and south with a net eastward direction, averaging approximately 7 feet per year.

2.3 Sampling Issues

No notable sampling issues were encountered at the SCPD in 2024.

3.0 ACTIVITIES PLANNED FOR 2025

Detection Monitoring is scheduled to continue on a semi-annual basis in the second and fourth quarters of 2025. Statistical analysis of the November 2024 Detection Monitoring data will be completed in 2025 and will be

Project Number: 23009-24

included in the 2025 Annual Report. As outlined in the Statistical Analysis Plan for the site, updates to the statistical limits should be completed once four to eight new sample results are available. After the first semiannual sampling event in 2025, there will be at least 4 new results for each Appendix III parameter. Therefore, background updates are planned to be completed in 2025.

Project Number: 23009-24

Tables

Table 3 November 2023 Detection Monitoring Results SCPD Surface Impoundment Sioux Energy Center, St. Charles County, MO

		BACKGR	OUND			GROU	INDWATER M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-2	UG-2	Prediction Limit TMW-4	TMW-4	Prediction Limit TMW-5	TMW-5	Prediction Limit TMW-6	TMW-6
			No	ovember 202	ember 2023 Detection Monitoring Event						
DATE	NA	11/10/2023	11/10/2023	NA	11/13/2023	NA	11/13/2023	NA	11/13/2023	NA	11/13/2023
рН	SU	7.04	7.14	6.29 - 7.5	7.10	6.585-7.26	7.06	6.642-7.223	6.95	6.59-7.093	6.95
BORON, TOTAL	μg/L	57.9 J	58.9 J	277.7	1,700	122.2	93.7 J	116.0	93.3 J	131.8	120
CALCIUM, TOTAL	μg/L	136,000	114,000	143,772	119,000	146,033	117,000 J	156,060	132,000	179,541	134,000
CHLORIDE, TOTAL	mg/L	7.2	13.4	93.74	12.9 J	3.216	2.0 J	2.435	1.4 J	11.02	2.0 J
FLUORIDE, TOTAL	mg/L	ND	ND	0.34	ND	0.48	ND	0.6744	ND	0.37	ND
SULFATE, TOTAL	mg/L	46.9	12.3	93.63	0.79 J	44.43	44.3 J	46.12	50.0 J	51.85	36.0 J
TOTAL DISSOLVED SOLIDS	mg/L	475	398	657.3	483	571	451	600.6	516	719.8	542
		-	F	ebruary 2024	Verification S	Sampling Ever	nt				
DATE	NA				2/7/2024				2/7/2024		
рН	SU										
BORON, TOTAL	μg/L				1,360						
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L								72.8		
TOTAL DISSOLVED SOLIDS	mg/L										

NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 7. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Prepared By: GTM Checked By: ANT Reviewed By: MNH

Table 4 May 2024 Detection Monitoring Results SCPD Surface Impoundment Sioux Energy Center, St. Charles County, MO

		D.A.GV.GD	CUND			CDOL	111014/4TED 1	IONITODING W	/ELLC		
ANALYTE	UNITS	BACKGR BMW-1S	BMW-3S	Prediction	UG-2	Prediction	TMW-4	ONITORING W	TMW-5	Prediction	TMW-6
				Limit UG-2		Limit TMW-4		Limit TMW-5		Limit TMW-6	
				May 2024	Detection Mo	nitoring Event	:				
DATE	NA	5/28/2024	5/28/2024	NA	5/28/2024	NA	5/29/2024	NA	5/29/2024	NA	5/29/2024
рН	SU	6.86	6.95	6.29 - 7.50	7.04	6.585-7.26	7.16	6.642-7.223	7.02	6.59-7.093	6.88
BORON, TOTAL	μg/L	58.1 J	54.1 J	277.7	143	122.2	74.9 J	116.0	81.3 J	131.8	93.5 J
CALCIUM, TOTAL	μg/L	133,000	116,000	143,772	87,100	146,033	96,800	156,060	109,000	179,541	143,000
CHLORIDE, TOTAL	mg/L	10.1	11.1	93.74	6.7	3.216	2.1 J	2.435	1.6	11.02	16.5
FLUORIDE, TOTAL	mg/L	ND	ND	0.34	ND	0.48	0.16 J	0.6744	ND	0.37	ND
SULFATE, TOTAL	mg/L	37.7	19.7	93.63	35.8	44.43	73.9 J	46.12	72.1	51.85	45.8
TOTAL DISSOLVED SOLIDS	mg/L	470	529	657.3	335	571	381	600.6	403	719.8	499
				July 2024	Verification Sa	ampling Event					
DATE	NA						7/29/2024		7/29/2024		7/29/2024
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										28.2 J
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L						69.2 J		64.6		
TOTAL DISSOLVED SOLIDS	mg/L										

NOTES

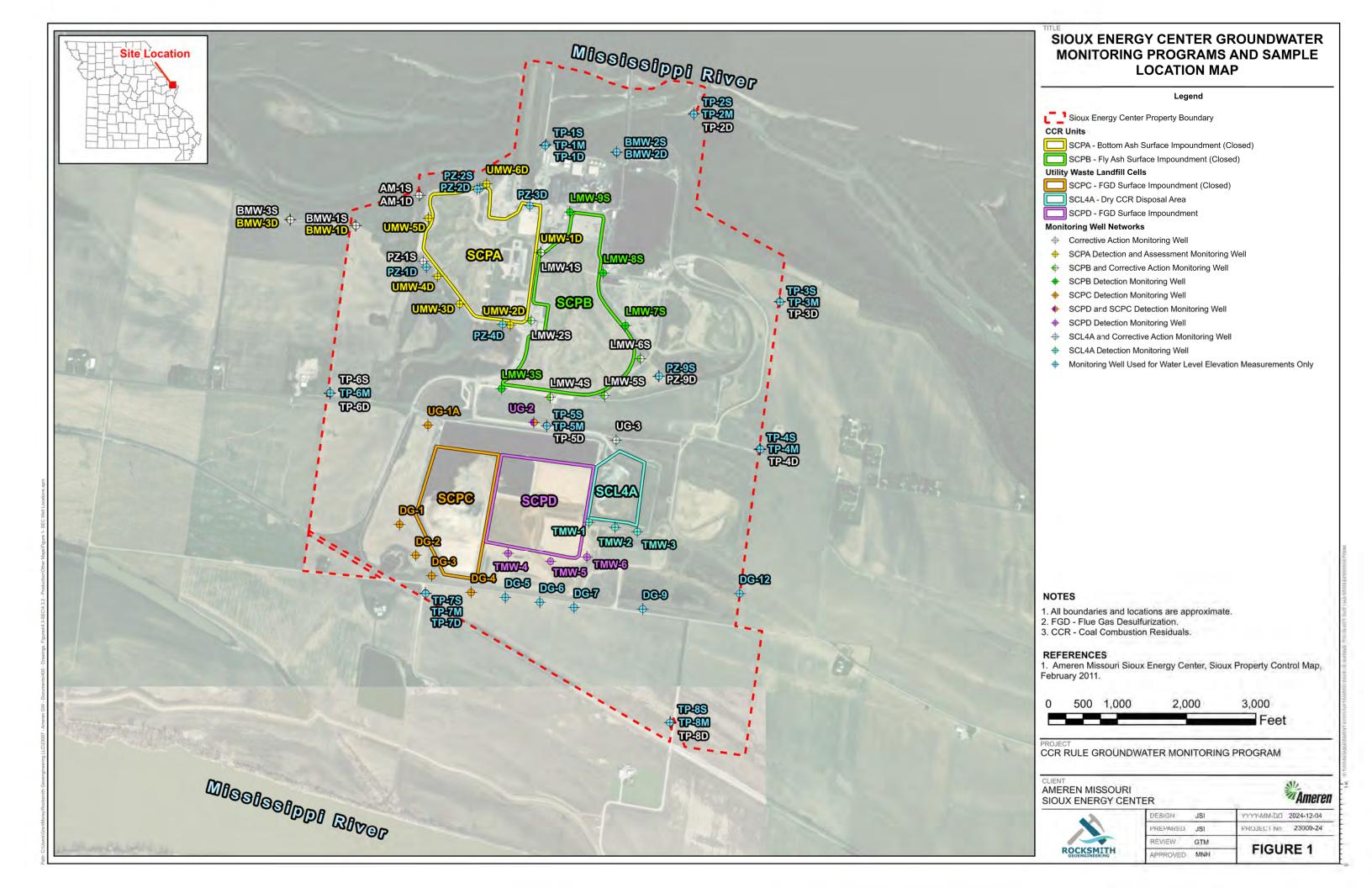
- 1. Unit Abbreviations: µg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 7. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Prepared By: JTR Checked By: JTA Reviewed By: MNH

Table 5 November 2024 Detection Monitoring Results SCPD Surface Impoundment Sioux Energy Center, St. Charles County, MO

		BACKG	ROUND	GROU	NDWATER M	ONITORING V	VELLS
ANALYTE	UNITS	BMW-1S	BMW-3S	UG-2	TMW-4	TMW-5	TMW-6
	N-	ovember 202	4 Detection M	Ionitoring Eve	ent		
DATE	NA	11/20/2024	11/20/2024	11/14/2024	11/19/2024	11/19/2024	11/19/2024
рН	SU	6.57	6.72	7.08	7.07	6.91	6.63
BORON, TOTAL	μg/L	61.9 J	57.3 J	112	100	72.5 J	106
CALCIUM, TOTAL	μg/L	175,000	113,000	90,800	116,000	99,800	133,000
CHLORIDE, TOTAL	mg/L	14.2	13.1	26.5	2.4	1.5	5.1
FLUORIDE, TOTAL	mg/L	ND	ND	0.29	0.43	0.40 J	0.30 J
SULFATE, TOTAL	mg/L	37.1	17.1	29.4	58.1	83.9	44.5
TOTAL DISSOLVED SOLIDS	mg/L	613	413	409	484	405	556

NOTES:


- 1. Unit Abbreviations: μ g/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Prepared By: JTR Checked By: VAH Reviewed By: MNH

Project Number: 23009-24

Figures

Project Number: 23009-24

February 23, 2024

Mark Haddock Rocksmith Geoengineering, LLC. 2320 Creve Coeur Mill Road Maryland Heights, MO 63043

RE: Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on February 09, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Para Church

Enclosures

cc: Jeffrey Ingram, Rocksmith Geoengineering, LLC. Lisa Meyer, Ameren Grant Morey, Rocksmith Geoengineering, LLC.

CERTIFICATIONS

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219

Missouri Inorganic Drinking Water Certification #: 10090

Arkansas Drinking Water

Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-5

Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212023-1 Oklahoma Certification #: 2022-057 Florida: Cert E871149 SEKS WET Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-12

Illinois Certification #: 004592

Kansas Field Laboratory Accreditation: # E-92587 Missouri SEKS Micro Certification: 10070

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60446940001	S-TMW-5	Water	02/07/24 14:50	02/09/24 05:30
60446940002	S-SCPD-DUP-1	Water	02/07/24 00:00	02/09/24 05:30
60446940003	S-SCPD-FB-1	Water	02/07/24 09:08	02/09/24 05:30
60446937001	S-UG-2	Water	02/07/24 09:10	02/09/24 05:30

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60446940001	S-TMW-5	EPA 200.7	JXD	1	PASI-K
		EPA 300.0	PL	1	PASI-K
60446940002	S-SCPD-DUP-1	EPA 200.7	JXD	1	PASI-K
		EPA 300.0	RKA	1	PASI-K
60446940003	S-SCPD-FB-1	EPA 200.7	JXD	1	PASI-K
		EPA 300.0	RKA	1	PASI-K
60446937001	S-UG-2	EPA 200.7	JXD	1	PASI-K
		SM 2540C	KVI	1	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Sample: S-TMW-5	Lab ID:	60446940001	Collecte	d: 02/07/2	1 14:50	Received: 02/	09/24 05:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	,	Method: EPA 2 lytical Services	'		od: EP	A 200.7			
Boron	85.3J	ug/L	100	6.4	1	02/14/24 10:28	02/16/24 15:05	7440-42-8	
300.0 IC Anions 28 Days	•	Method: EPA 3 lytical Services		ity					
Sulfate	72.8	mg/L	10.0	5.5	10		02/22/24 23:16	14808-79-8	

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Sample: S-SCPD-DUP-1	Lab ID:	60446940002	Collecte	d: 02/07/2	1 00:00	Received: 02/	09/24 05:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•	Method: EPA 2 ytical Services			od: EP	PA 200.7			
Boron	1260	ug/L	100	6.4	1	02/14/24 10:28	02/16/24 15:11	7440-42-8	
300.0 IC Anions 28 Days	•	Method: EPA 3 ytical Services		ity					
Sulfate	74.6	mg/L	10.0	5.5	10		02/21/24 17:47	14808-79-8	

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Sample: S-SCPD-FB-1	Lab ID:	60446940003	Collecte	d: 02/07/24	1 09:08	Received: 02/	09/24 05:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	,	Method: EPA 2			od: EP	A 200.7			
Boron	<6.4	ug/L	100	6.4	1	02/14/24 10:28	02/16/24 15:19	7440-42-8	
300.0 IC Anions 28 Days	•	Method: EPA 3		ity					
Sulfate	0.75J	mg/L	1.0	0.55	1		02/21/24 17:59	14808-79-8	

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Sample: S-UG-2	Lab ID:	60446937001	Collecte	d: 02/07/24	09:10	Received: 02/	/09/24 05:30 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•	Method: EPA 2 lytical Services	•		od: EP	A 200.7			
Boron	1360	ug/L	100	6.4	1	02/16/24 12:01	02/20/24 09:32	7440-42-8	
2540C Total Dissolved Solids	•	Method: SM 25 ytical Services		ity					
Total Dissolved Solids	511	mg/L	10.0	10.0	1		02/12/24 11:06		AB

Project: AMEREN SCPD-VERIFICATION SAMP.

EPA 200.7

Pace Project No.: 60446940

QC Batch Method:

Date: 02/23/2024 02:01 PM

QC Batch: 883188

> Analysis Description: 200.7 Metals, Total

Laboratory:

EPA 200.7

Analysis Method:

Pace Analytical Services - Kansas City

60446940001, 60446940002, 60446940003 Associated Lab Samples:

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60446940001, 60446940002, 60446940003

> Blank Reporting

MDL Qualifiers Parameter Units Result Limit Analyzed

Boron <6.4 100 6.4 02/16/24 14:55 ug/L

LABORATORY CONTROL SAMPLE: 3496095

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Boron ug/L 1000 957 96 85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3496096 3496097

> MSD MS

60446940001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits 1010 20 Boron ug/L 85.3J 1000 1000 1030 92 95 70-130 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

AMEREN SCPD-VERIFICATION SAMP. Project:

Pace Project No.: 60446940

QC Batch: 883490 Analysis Method:

200.7 Metals, Total

MDL

97

EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60446937001

METHOD BLANK:

Matrix: Water

Associated Lab Samples:

60446937001

Parameter

Blank

Reporting

Result

Laboratory:

Limit

Analyzed

Qualifiers

Boron

Boron

Boron

Boron

Boron

Units ug/L

<6.4

100

6.4 02/20/24 09:05

85-115

LABORATORY CONTROL SAMPLE: Parameter

3497214

Units

ug/L

60446917001

60446937003

Result

ug/L

95.2J

Result

9030

Spike Conc.

1000

LCS Result

LCS % Rec

MSD

Result

9900

% Rec Limits

Qualifiers

Limits

Limits

70-130

70-130

Parameter

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3497215

MS

Spike

Conc.

MS

Spike

Conc.

1000

1000

MSD Spike

Conc.

3497216

9840

970

MS

Result

MS

% Rec

% Rec

973

81

MSD

87

% Rec

% Rec

% Rec

Max **RPD** RPD

20

Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

3497217

Conc.

MSD Spike

1000

<6.4

1000

3497218 MSD

Result

1080

MS

MSD % Rec

98

97

Max RPD RPD Qual

20

MATRIX SPIKE SAMPLE:

Date: 02/23/2024 02:01 PM

Parameter

3497219

Parameter Units

Units

ug/L

Units

ug/L

60446937005 Result

Spike Conc.

MS

Result

1090

1000

MS Result

MS % Rec

99

% Rec Limits

70-130

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

QC Batch: 882943 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60446937001

METHOD BLANK: 3495313 Matrix: Water

Associated Lab Samples: 60446937001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L 31.5 5.0 5.0 02/12/24 10:58 AB,MW

LABORATORY CONTROL SAMPLE: 3495314

Spike LCS LCS % Rec Conc. Result % Rec Limits Parameter Units Qualifiers **Total Dissolved Solids** mg/L 1000 1080 108 80-120 AB

SAMPLE DUPLICATE: 3495315

60446838002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 288 **Total Dissolved Solids** mg/L 3 10 AB 298

SAMPLE DUPLICATE: 3495316

Date: 02/23/2024 02:01 PM

60446917001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 1450 mg/L 1140 23 10 AB, D6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

AMEREN SCPD-VERIFICATION SAMP. Project:

Pace Project No.: 60446940

QC Batch: 883836 Analysis Method: EPA 300.0 QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

> Laboratory: Pace Analytical Services - Kansas City

> > MSD

% Rec

Max

Associated Lab Samples: 60446940001, 60446940002, 60446940003

METHOD BLANK: Matrix: Water

Associated Lab Samples: 60446940001, 60446940002, 60446940003

> Blank Reporting MDL Parameter Units Result Limit Analyzed Qualifiers

Sulfate < 0.55 1.0 0.55 02/21/24 12:01 mg/L

LABORATORY CONTROL SAMPLE: 3498690

Spike LCS LCS % Rec Limits Units Conc. Result % Rec Qualifiers Parameter Sulfate 5 5.3 106 90-110 mq/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3498691 3498692

MS MSD 60446913002 Spike Spike MS MSD MS

Units Result RPD Parameter Result Conc. Conc. Result % Rec % Rec Limits **RPD** Qual Sulfate mg/L 37.5 50 50 87.7 86.8 100 99 80-120 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3498694 3498695

MS MSD

60446916001 MS MSD MS MSD Spike Spike % Rec Max RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual Sulfate 50 72.6 50 123 122 100 98 15 mg/L 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3498697 3498698

MSD MS 60446940001 Spike Spike MS MSD MS MSD % Rec Max Conc. Result Result % Rec % Rec **RPD** RPD Parameter Units Result Conc. Limits Qual

Sulfate mg/L 72.8 50 50 122 121 98 97 80-120 1 15

SAMPLE DUPLICATE: 3498693

Date: 02/23/2024 02:01 PM

60446913002 Dup Max Parameter Units Result Result RPD RPD Qualifiers 37.5 Sulfate mg/L 39.0 4 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Date: 02/23/2024 02:01 PM

SAMPLE DUPLICATE: 3498696						
Parameter	Units	60446916001 Result	Dup Result	RPD	Max RPD	Qualifiers
Sulfate	mg/L	72.6	69.8	4		15
SAMPLE DUPLICATE: 3498699						
		60446940001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Sulfate	mg/L	72.8	70.9	3		 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 02/23/2024 02:01 PM

AB Analyte was detected in an associated instrument blank.

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

MW Due to matrix interference, achieving a constant weight is not possible.

REPORT OF LABORATORY ANALYSIS

(913)599-5665

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCPD-VERIFICATION SAMP.

Pace Project No.: 60446940

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch	
60446937001	S-UG-2	EPA 200.7	883490	EPA 200.7	883506	
60446940001	S-TMW-5	EPA 200.7	883188	EPA 200.7	883207	
60446940002	S-SCPD-DUP-1	EPA 200.7	883188	EPA 200.7	883207	
60446940003	S-SCPD-FB-1	EPA 200.7	883188	EPA 200.7	883207	
60446937001	S-UG-2	SM 2540C	882943			
60446940001	S-TMW-5	EPA 300.0	883836			
60446940002	S-SCPD-DUP-1	EPA 300.0	883836			
60446940003	S-SCPD-FB-1	EPA 300.0	883836			

W0#:60446940

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample C

Revision: 2	Effective Date: 01/12/2022	Issued By: Lenexa
Client Name: Rocksmith	Geoeng	
Courier: FedEx □ UPS □ VIA □	Clay □ PEX □ ECI □ Pace	e □ Xroads □ Client □ Other □
Tracking #:	Pace Shipping Label Used? Y	es □ Mo □
Custody Seal on Cooler/Box Present: Yes		lo 🗆 📌
Packing Material: Bubble Wrap ☐ Bu Thermometer Used: 7298		None □ Other □
7	Type of Ice: Wet Blue None	Date and initials of person
Cooler Temperature (°C): As-read 1-2 5 emperature should be above freezing to 6°C	_Corr. Factor Corrected _C	examining contents:
Chain of Custody present:	Øyes □No □N/A	pozjany
Chain of Custody relinquished:	Yes ONO ON/A	
amples arrived within holding time:	Ayes ONO ON/A	
hort Hold Time analyses (<72hr):	□Yes ZINO □N/A	
ush Turn Around Time requested:	□Yes INO □N/A	
ufficient volume:	ZYes □No □N/A	
orrect containers used:	Ayes ONO ON/A	
ace containers used:	Ayes □No □N/A	
ontainers intact:	Žives □No □N/A	
preserved 5035A / TX1005/1006 soils frozen in	48hrs? □Yes □No □N/A	
tered volume received for dissolved tests?	□Yes □No □N/A	
imple labels match COC: Date / time / ID / analys	Ses ✓Yes ☐No ☐N/A	
mples contain multiple phases? Matrix:	WT DYES NO DN/A	
Intainers requiring pH preservation in compliance	? ☐Yes ☐No ☐N/A List sar	mple IDs, volumes, lot #'s of preservative and the
NO_3 , H_2SO_4 , $HCI<2$; $NaOH>9$ Sulfide, $NaOH>10$ Cyanio ceptions: VOA , $Micro, O&G$, KS TPH , $OK-DRO$)	LOT#: 67/87	ne added.
anide water sample checks: ad acetate strip turns dark? (Record only)		
tassium iodide test strip turns blue/purple? (Prese	□Yes □No erve) □Yes □No	
Blank present:	□Yes □No □N/A	
adspace in VOA vials (>6mm):	□Yes □No □NIA	
nples from USDA Regulated Area: State:	□Yes □No □N/A	
litional labels attached to 5035A / TX1005 vials in	n the field? □Yes □No ☑N/A	
		d Data Required? Y / N
son Contacted:	Date/Time:	
nments/ Resolution;		

F-ALL-Q-020rev 08, 12-Oct-2007

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

Pace Analytical

Name: Rocksmith H ₂ SO ₄ H ₂ SO ₄ H ₂ SO ₅ H ₃ SS ₆ H ₄ H ₅ SO ₆ H ₅ S ₇ O ₃ H ₅ S ₇ O ₃ M ₆ Chreb M ₆ Chreb M ₆ Chreb M ₇ M ₇ M ₇ M ₇ M ₇ M ₇ M ₈	Invoice Information:	Page	5
School Sample State St	Attention:		
St. Charles, MO 63304		REGULATORY AGENCY	
Section D Sample De Muist Beldocué@nocésmitisgo_com Project Name America SCPD - Verification Sampling Presented Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name America SCPD - Verification Sampling Presented Cline Information Project Name	Address:	NPDES G GROUND WATER	TER - DRINKING WATER
Section Date Perspect Name	Pace Quote Reference:	. L	_ L
Sandtrid Project Number: COC#3 Sandtrid Project Number: COC#3 PLE ID		ation	
Section D		STATE: MO	
Secretion D	Reque	Requested Analysis Filtered (Y/N)	
SAMPLE ID Sample IS MUST BE UNIQUE S.UG-2 S.TMW-5 S.CPD-DUP-1 WAT G ADDITIONAL COMMENTS MAT G ADDITIONAL COMMENTS SERVICED BY AFFILIATION MAT G ADDITIONAL COMMENTS SAMPLE ID WAT G S.UG-2 S.UG-2 WAT G S.UG-2 WAT G S.UG-2 WAT G S.UG-2 WAT G	2 ↑ N/A	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
Sample IDS MUST BE UNIQUE TIME Sample IDS MUST BE UNIQUE TIME Sample IDS MUST BE UNIQUE TIME TIME Sample IDS MUST BE UNIQUE TIME	1		Oppophog
S-UG-2 S-TMW-5 S-SCPD-DIP-1 S-SCPD-MS-1 S-SCPD-MSD-1 WT G S-SCPD-MSD-1 WT G S-SCPD-MSD-1 WT G MT G	Unpreserved H ₂ SO ₄ HuO ₃ HCI Va ₂ S ₂ O ₃ Methanol Other Analysis Test	Sesidual Chlorine	2
S-SCPD-DUP-1 S-SCPD-MS-1 S-SCPD-MS-1 WT G S-7-24 (1450 2.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			race riojectivo, Labil.D.
S-SCPD-DUP-1 S-SCPD-FB-1 WT G S-SCPD-MSD-1 WT G W	2		
S-SCPD-FB-1 S-SCPD-MS-1 WT 6 S-SCPD-MSD-1 WT 6 WT 7 WT 6 WT 6 WT 6 WT 6 WT 7 WT 6 WT 6 WT 7 WT 10 W	77		
S-SCPD-MSD-1 NT G	7 7 7		
S-SCPD-MSD-1	i III II I		Collected @ S-TMU-5
WT G	71 - 12		11
WT G			
ADDITIONAL COMMENTS WT G WT			
ADDITIONAL COMMENTS WT G WT			
ADDITIONAL COMMENTS RELINQUISHED BY I AFFILIATION RELINQUISH BY I AFFILIAT			
RELINQUISHED BY JAFFILLATION DATE TIME MAL MAL MAL JABAR 2-8-24 1340			
7-8-24	1	ON DATE TIME	SAMPLE CONDITIONS
	1340 (Mulphose	- 1/9 0530 1.2	入
		6-0	X X
SAMPLER NAME AND SIGNATURE			tet.
PRINT Name of SAMPLER: Grant Marty DATE Signed SIGNATURE of SAMPLER: DATE Signed	Grant Mary	Temp in o	Seceived of Ice (Y/V) Custody eatled Coo (Y/V) (Y/V)

15858-

Notes Do not Low Live

Ameren SCPD

Site:

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued_xy. Lenexa

Client:

Other SPLC WPDU BP3Z Bb3C BP3S BP3F ВРЗИ BP1N BP3U **BP2U** UI98 Medn Mekn NGFU YG2N VG4U AG3S **YGSU** UrbA HFDA BG10 **DC9B** DG9W DC9N UG9V D690 DC9H NG9H Container Codes Matrix COC Ine Item 10 -9 თ ന S ^ 00

Allen biguiliate alaca vial				PIASTIC
torre pisquate clear vial	WGKU	8oz clear soil jar	BP1C	11 NAOH plactic
40mL HCI amber voa vial	WGFU	4oz clear soil jar	RP1N	1 HNO3 plastic
40mL MeOH clear vial	WG2U	20z clear soil far	pp4c	The Disagraph
40ml TSP amber vial	100	m 100 100 100	2	IL nzoO4 plastic
1000111	O LOS	402 unpreserved amber wide	IBP1U	1L unpreserved plastic
40mL HZSO4 amber vial	AGOU	100mL unores amber glass	BP1Z	11 NaOH Zn Acetate
40mL Na Thio amber vial	AG1H	1L HCI amber glass	BP2C	500ml NAOH plastic
40mL amber unpreserved	AG1S	1L H2SO4 amber glass	RP2N	500ml HNO3 plastic
40mL HCl clear vial	AG1T	11. Na Thiosulfate clear/amber place	RD2C	Soom Liberal Liberal
40mL Na Thio clear vial	AC111	ditor upono combo allo	200	SOUTH TESO Plastic
	2	uitei uiipies atilbei glass	BP2U	500mL unpreserved plastic
40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP27	500ml NaOH Zn Acetate
1liter H2SO4 clear glass	AG2S	500ml H2SO4 amber place	PD2C	Seomi Machine
Titler morroe aloos	000	CON STATE OF THE S	200	ADDITION DIASIIC
litter unipres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered
Z50mL HCL Clear glass	AG2U	500mL unpres amber glass	RP3N	250ml HNO3 plastic
250mL Unpres Clear glass	AG311	250ml unres ambarata	11000	Sour III O plastic
1602 oloor ooil iar	2001	FOUR DIPLES ATTION GIASS	BP-30	Z50mL unpreserved plastic
TOOK CIEST SOIL ST	AG40	125mL unpres amber glass	BP3S	250mL H2SO4 plastic
	AGSU	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate
			BP4U	125mL unpreserved plastic
			BP4N	125mL HNO3 plastic
			BP4S	125mL H2SO4 plastic
			10074	

Wipe/Swab 120mL Coliform Na Thiosulfate

Ziploc Bag

ZPLC SP5

Glass

DG9B DG9M DG9C DG9C DG9C DG9T

VG9H

VG9U BG1S BG1U BG3H BG3U

Air Filter

Air Cassettes Terracore Kit Summa Can Solid Non-aqueous Liquid

SIL NAL OL WP

16oz unpresserved plstic

Water

Drinking Water

OIL

Jhb9hh09

Work Order Number:

Pace Analytical Services, LLC

To: Project File Project Number: 23009

Rocksmith Geoengineering, LLC

CC: Mark Haddock, Jeffrey Ingram

From: Grant Morey Email: Grant.Morey@Rocksmithgeo.com

RE: Data Validation Summary, Sioux Energy Center – SCPD Verification – Data Package 60446940

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

 When a compound was detected in a sample result between the Method Detection Limit (MDL) and Practical Quantification Limit (PQL), the results were recorded at the detection value and qualified as estimates (J).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Rocksmith Geoengineering			Project Manager: J. Ingram					
Project	Name: Ameren SCPD Verification	_		ect Numbe				
Review	er: G. Morey		Valid	Validation Date: 3/19/2024				
Laborat	tory: Pace Analytical		SDG	604469 #:	40			
Analytic	cal Method (type and no.): EPA 200.7 (Boron); EPA 300	—).0 (Sulfa						
Matrix:	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste							
Sample	Names S-TMW-5, S-SCPD-DUP-1, S-SCPD-FB-1, S-UG-	2						
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bad	ck please indicate in comment areas).			
Field Ir	nformation	YES	NO	NA	COMMENTS			
a)	Sampling dates noted?	х			2/7/2024			
b)	Sampling team indicated?	Х			ANT/GTM			
c)	Sample location noted?	Х						
d)	Sample depth indicated (Soils)?			х				
e)	Sample type indicated (grab/composite)?	×			Grab			
f)	Field QC noted?	X			See Notes			
g)	Field parameters collected (note types)?	×			pH, Spec Cond, Turb, Temp, DO, ORP			
9) h)	Field Calibration within control limits?	×			<u> </u>			
,	Notations of unacceptable field conditions/performa	_	⊔ om field l	⊔ ogs or fiold	notos?			
i)	Notations of unacceptable field conditions/performa		_	_	Hotes:			
:\	Described by the latest and the state of the		X		No lab narrative.			
j)	Does the laboratory narrative indicate deficiencies?			х	NO IAD HAITAUVE.			
	Note Deficiencies:							
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS			
a)	Was the COC properly completed?	х						
b)	Was the COC signed by both field							
- /	and laboratory personnel?	Х						
c)	Were samples received in good condition?	Х						
Genera	ıl (reference QAPP or Method)	YES	NO	NA	COMMENTS			
		_	_	_				
a)	Were hold times met for sample pretreatment?	х						
b)	Were hold times met for sample analysis?	х						
c)	Were the correct preservatives used?	Х						
d)	Was the correct method used?	Х						
e)	Were appropriate reporting limits achieved?	Х						
f)	Were any sample dilutions noted?	Х						
a)	Were any matrix problems noted?		х					

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	Х			See notes
b)	Were analytes detected in the field blank(s)?	Х			See notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			Х	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	Х			
c)	Was the LCS accuracy criteria met?	Х			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample n	names)?	
		X			S-SCPD-DUP-1 @ S-UG-2
b)	Were field dup. precision criteria met (note RPD)?	х			
c)	Were lab duplicates analyzed (note original and dup	olicate	samples)?	?	
		Х			See notes
d)	Were lab dup. precision criteria met (note RPD)?		Х		See notes
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			Х	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			Х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?	Х			
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?	Х			
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?	Х			
Comm	ents/Notes:				
Gene	ral:				
Diluti	ons noted in some samples for sulfate, no qualification	tion ne	cessary.		

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:
Method Blanks:
3495313: TDS detected in method blank (31.5). Associated with sample -001. Result > RL and 10x blank, no qualification
necessary.
Field Blank:
TIGU DIATIK.
S-SCPD-FB-1 @ S-UG-2: Sulfate (0.75J). Sulfate not analyzed in parent sample, no qualification necessary.
Lab Duplicate:
3495316: Lab duplicate RPD (23%) exceeds control limit for TDS, associated with unrelated sample, result qualified
as estimate.
Lab duplicate max RPD: 10%: TDS

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
	`			
			1	
			+	
	H LM			3/10/2024

Signature:	Grant Mon	ey	Date: 3/19/2024	

July 09, 2024

Mark Haddock Rocksmith Geoengineering, LLC. 2320 Creve Coeur Mill Road Maryland Heights, MO 63043

RE: Project: AMEREN SCPD

Pace Project No.: 60453819

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on May 30, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223

Para Church

Project Manager

Enclosures

cc: Jeffrey Ingram, Rocksmith Geoengineering, LLC. Lisa Meyer, Ameren

Grant Morey, Rocksmith Geoengineering, LLC.

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: AMEREN SCPD Pace Project No.: 60453819

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: AMEREN SCPD Pace Project No.: 60453819

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60453819001	S-TMW-4	Water	05/29/24 09:13	05/30/24 05:35
60453819002	S-TMW-5	Water	05/29/24 10:08	05/30/24 05:35
60453819003	S-TMW-6	Water	05/29/24 11:20	05/30/24 05:35
60453819004	S-SCPD-DUP-1	Water	05/29/24 00:00	05/30/24 05:35
60453819005	S-SCPD-FB-1	Water	05/29/24 11:15	05/30/24 05:35
60453817001	S-UG-2	Water	05/28/24 13:25	05/30/24 05:35
60453812001	S-BMW-1S	Water	05/28/24 11:35	05/30/24 05:35
60453812002	S-BMW-3S	Water	05/28/24 14:20	05/30/24 05:35

SAMPLE ANALYTE COUNT

Project: AMEREN SCPD Pace Project No.: 60453819

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60453819001	S-TMW-4	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
60453819002	S-TMW-5	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
60453819003	S-TMW-6	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
0453819004	S-SCPD-DUP-1	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
0453819005	S-SCPD-FB-1	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
60453817001	S-UG-2	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
60453812001	S-BMW-1S	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K
60453812002	S-BMW-3S	EPA 200.7	JXD	7	PASI-K
		SM 2320B	SR1	1	PASI-K
		SM 2540C	KVI	1	PASI-K
		EPA 300.0	PL	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-TMW-4	Lab ID:	60453819001	Collected	d: 05/29/24	1 09:13	Received: 05/	30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	74.9J	ug/L	100	6.4	1	06/05/24 15:40	06/07/24 16:07	7440-42-8	
Calcium	96800	ug/L	200	26.9	1	06/05/24 15:40	06/07/24 16:07	7440-70-2	M1
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 15:40	06/07/24 16:07	7439-89-6	
Magnesium	22000	ug/L	50.0	20.1	1	06/05/24 15:40	06/07/24 16:07	7439-95-4	
Manganese	425	ug/L	5.0	0.39	1	06/05/24 15:40	06/07/24 16:07	7439-96-5	
Potassium	4930	ug/L	500	69.7	1	06/05/24 15:40	06/07/24 16:07	7440-09-7	
Sodium	3830	ug/L	500	115	1	06/05/24 15:40	06/07/24 16:07	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	276	mg/L	20.0	10.5	1		06/07/24 14:10		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	381	mg/L	10.0	10.0	1		06/04/24 12:49		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
- -	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	2.1	mg/L	1.0	0.53	1		06/12/24 16:48	16887-00-6	M1
Fluoride	0.16J	mg/L	0.20	0.12	1		06/12/24 16:48	16984-48-8	M1,N2
Sulfate	73.9	mg/L	10.0	5.5	10		06/12/24 17:47	14808-79-8	M1

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-TMW-5	Lab ID:	60453819002	Collected	d: 05/29/24	10:08	Received: 05/	/30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ty					
Boron	81.3J	ug/L	100	6.4	1	06/05/24 15:40	06/07/24 16:18	7440-42-8	
Calcium	109000	ug/L	200	26.9	1	06/05/24 15:40	06/07/24 16:18	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 15:40	06/07/24 16:18	7439-89-6	
Magnesium	20500	ug/L	50.0	20.1	1	06/05/24 15:40	06/07/24 16:18	7439-95-4	
Manganese	493	ug/L	5.0	0.39	1	06/05/24 15:40	06/07/24 16:18	7439-96-5	
Potassium	5130	ug/L	500	69.7	1	06/05/24 15:40	06/07/24 16:18	7440-09-7	
Sodium	3980	ug/L	500	115	1	06/05/24 15:40	06/07/24 16:18	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ty					
Alkalinity, Total as CaCO3	302	mg/L	20.0	10.5	1		06/08/24 14:36		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ty					
Total Dissolved Solids	403	mg/L	10.0	10.0	1		06/04/24 12:49		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
-	Pace Anal	ytical Services	- Kansas C	ty					
Chloride	1.6	mg/L	1.0	0.53	1		06/12/24 19:16	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 19:16	16984-48-8	N2
Sulfate	72.1	mg/L	10.0	5.5	10		06/12/24 19:31	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-TMW-6	Lab ID:	60453819003	Collecte	d: 05/29/2	11:20	Received: 05/	30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	<6.4	ug/L	100	6.4	1	06/05/24 15:40	06/07/24 16:20	7440-42-8	
Calcium	<26.9	ug/L	200	26.9	1	06/05/24 15:40	06/07/24 16:20	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 15:40	06/07/24 16:20	7439-89-6	
Magnesium	<20.1	ug/L	50.0	20.1	1	06/05/24 15:40	06/07/24 16:20	7439-95-4	
Manganese	< 0.39	ug/L	5.0	0.39	1	06/05/24 15:40	06/07/24 16:20	7439-96-5	
Potassium	93.5J	ug/L	500	69.7	1	06/05/24 15:40	06/07/24 16:20	7440-09-7	В
Sodium	194J	ug/L	500	115	1	06/05/24 15:40	06/07/24 16:20	7440-23-5	В
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	433	mg/L	20.0	10.5	1		06/08/24 14:42		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	499	mg/L	10.0	10.0	1		06/04/24 12:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
-	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	16.5	mg/L	1.0	0.53	1		06/12/24 19:46	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 19:46	16984-48-8	N2
Sulfate	45.8	mg/L	10.0	5.5	10		06/12/24 20:01	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-SCPD-DUP-1	Lab ID:	60453819004	Collected:	05/29/24	00:00	Received: 05/	30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Analy	ytical Services	- Kansas Cit	y					
Boron	78.6J	ug/L	100	6.4	1	06/05/24 15:40	06/07/24 16:22	7440-42-8	
Calcium	107000	ug/L	200	26.9	1	06/05/24 15:40	06/07/24 16:22	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 15:40	06/07/24 16:22	7439-89-6	
Magnesium	20100	ug/L	50.0	20.1	1	06/05/24 15:40	06/07/24 16:22	7439-95-4	
Manganese	470	ug/L	5.0	0.39	1	06/05/24 15:40	06/07/24 16:22	7439-96-5	
Potassium	4990	ug/L	500	69.7	1	06/05/24 15:40	06/07/24 16:22	7440-09-7	
Sodium	3860	ug/L	500	115	1	06/05/24 15:40	06/07/24 16:22	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Analy	ytical Services	- Kansas Cit	y					
Alkalinity, Total as CaCO3	300	mg/L	20.0	10.5	1		06/08/24 14:48		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Analy	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	389	mg/L	10.0	10.0	1		06/04/24 12:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
- -	Pace Analy	ytical Services	- Kansas Cit	y					
Chloride	1.5	mg/L	1.0	0.53	1		06/12/24 20:16	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 20:16	16984-48-8	N2
Sulfate	75.3	mg/L	10.0	5.5	10		06/12/24 20:30	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-SCPD-FB-1	Lab ID:	60453819005	Collected	: 05/29/24	11:15	Received: 05/	/30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	93.5J	ug/L	100	6.4	1	06/05/24 15:40	06/07/24 16:24	7440-42-8	
Calcium	143000	ug/L	200	26.9	1	06/05/24 15:40	06/07/24 16:24	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 15:40	06/07/24 16:24	7439-89-6	
Magnesium	27700	ug/L	50.0	20.1	1	06/05/24 15:40	06/07/24 16:24	7439-95-4	
Manganese	222	ug/L	5.0	0.39	1	06/05/24 15:40	06/07/24 16:24	7439-96-5	
Potassium	7620	ug/L	500	69.7	1	06/05/24 15:40	06/07/24 16:24	7440-09-7	
Sodium	5120	ug/L	500	115	1	06/05/24 15:40	06/07/24 16:24	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	<10.5	mg/L	20.0	10.5	1		06/08/24 14:54		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
		ytical Services		ty					
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		06/04/24 12:50		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	<0.53	mg/L	1.0	0.53	1		06/12/24 20:45	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 20:45	16984-48-8	N2
Sulfate	<0.55	mg/L	1.0	0.55	1		06/12/24 20:45	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-UG-2	Lab ID:	60453817001	Collecte	d: 05/28/24	13:25	Received: 05/	/30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
	Pace Analy	tical Services	- Kansas C	ity					
Boron	143	ug/L	100	6.4	1	06/05/24 14:26	06/07/24 12:53	7440-42-8	
Calcium	87100	ug/L	200	26.9	1	06/05/24 14:26	06/07/24 12:53	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	06/05/24 14:26	06/07/24 12:53	7439-89-6	
Magnesium	18100	ug/L	50.0	20.1	1	06/05/24 14:26	06/07/24 12:53	7439-95-4	
Manganese	25.4	ug/L	5.0	0.39	1	06/05/24 14:26	06/07/24 12:53	7439-96-5	
Potassium	4150	ug/L	500	69.7	1	06/05/24 14:26	06/07/24 12:53	7440-09-7	
Sodium	8680	ug/L	500	115	1	06/05/24 14:26	06/07/24 12:53	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Analy	tical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	272	mg/L	20.0	10.5	1		06/06/24 15:57		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Analy	tical Services	- Kansas C	ity					
Total Dissolved Solids	335	mg/L	10.0	10.0	1		06/03/24 13:07		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Analy	tical Services	- Kansas C	ity					
Chloride	6.7	mg/L	1.0	0.53	1		06/13/24 05:13	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/13/24 05:13	16984-48-8	N2
Sulfate	35.8	mg/L	5.0	2.8	5		06/13/24 05:31	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-BMW-1S	Lab ID:	60453812001	Collecte	d: 05/28/24	11:35	Received: 05/	30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	58.1J	ug/L	100	6.4	1	06/05/24 14:26	06/07/24 12:09	7440-42-8	
Calcium	133000	ug/L	200	26.9	1	06/05/24 14:26	06/07/24 12:09	7440-70-2	
Iron	27.5J	ug/L	50.0	9.1	1	06/05/24 14:26	06/07/24 12:09	7439-89-6	
Magnesium	25800	ug/L	50.0	20.1	1	06/05/24 14:26	06/07/24 12:09	7439-95-4	
Manganese	606	ug/L	5.0	0.39	1	06/05/24 14:26	06/07/24 12:09	7439-96-5	
Potassium	404J	ug/L	500	69.7	1	06/05/24 14:26	06/07/24 12:09	7440-09-7	
Sodium	6070	ug/L	500	115	1	06/05/24 14:26	06/07/24 12:09	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
-	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	408	mg/L	20.0	10.5	1		06/05/24 17:24		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	470	mg/L	10.0	10.0	1		06/03/24 13:05		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	10.1	mg/L	1.0	0.53	1		06/12/24 18:30	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 18:30	16984-48-8	N2
Sulfate	37.7	mg/L	10.0	5.5	10		06/12/24 18:47	14808-79-8	

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Sample: S-BMW-3S	Lab ID:	60453812002	Collected	1: 05/28/24	14:20	Received: 05/	30/24 05:35 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Ci	ty					
Boron	54.1J	ug/L	100	6.4	1	06/05/24 14:26	06/07/24 12:11	7440-42-8	
Calcium	116000	ug/L	200	26.9	1	06/05/24 14:26	06/07/24 12:11	7440-70-2	
Iron	33.4J	ug/L	50.0	9.1	1	06/05/24 14:26	06/07/24 12:11	7439-89-6	
Magnesium	20500	ug/L	50.0	20.1	1	06/05/24 14:26	06/07/24 12:11	7439-95-4	
Manganese	140	ug/L	5.0	0.39	1	06/05/24 14:26	06/07/24 12:11	7439-96-5	
Potassium	618	ug/L	500	69.7	1	06/05/24 14:26	06/07/24 12:11	7440-09-7	
Sodium	6410	ug/L	500	115	1	06/05/24 14:26	06/07/24 12:11	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
•	Pace Anal	ytical Services	- Kansas Ci	ty					
Alkalinity, Total as CaCO3	364	mg/L	20.0	10.5	1		06/05/24 17:47		
2540C Total Dissolved Solids	Analytical	Method: SM 25	640C						
	Pace Anal	ytical Services	- Kansas Ci	ty					
Total Dissolved Solids	529	mg/L	10.0	10.0	1		06/03/24 13:05		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Anal	ytical Services	- Kansas Ci	ty					
Chloride	11.1	mg/L	1.0	0.53	1		06/12/24 19:05	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		06/12/24 19:05	16984-48-8	N2
Sulfate	19.7	mg/L	1.0	0.55	1		06/12/24 19:05	14808-79-8	

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896847 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453812001, 60453812002, 60453817001

METHOD BLANK: 3549596 Matrix: Water

Associated Lab Samples: 60453812001, 60453812002, 60453817001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<6.4	100	6.4	06/07/24 11:57	
Calcium	ug/L	<26.9	200	26.9	06/07/24 11:57	
Iron	ug/L	<9.1	50.0	9.1	06/07/24 11:57	
Magnesium	ug/L	<20.1	50.0	20.1	06/07/24 11:57	
Manganese	ug/L	< 0.39	5.0	0.39	06/07/24 11:57	
Potassium	ug/L	<69.7	500	69.7	06/07/24 11:57	
Sodium	ug/L	<115	500	115	06/07/24 11:57	

ı	ABORATORY	CONTROL	SAMPLE	3549597

Date: 07/09/2024 12:09 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	954	95	85-115	
Calcium	ug/L	10000	10200	102	85-115	
Iron	ug/L	10000	10300	103	85-115	
Magnesium	ug/L	10000	9920	99	85-115	
Manganese	ug/L	1000	1040	104	85-115	
Potassium	ug/L	10000	10000	100	85-115	
Sodium	ug/L	10000	10100	101	85-115	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3549598 3549599												
			MS	MSD								
		60453805002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	64.1J	1000	1000	1030	1020	96	96	70-130	1	20	
Calcium	ug/L	112000	10000	10000	122000	121000	99	91	70-130	1	20	
Iron	ug/L	8240	10000	10000	18500	18500	102	103	70-130	0	20	
Magnesium	ug/L	25600	10000	10000	35600	35100	100	96	70-130	1	20	
Manganese	ug/L	572	1000	1000	1610	1580	104	101	70-130	2	20	
Potassium	ug/L	3410	10000	10000	13600	13400	102	100	70-130	1	20	
Sodium	ug/L	6260	10000	10000	16300	16300	100	101	70-130	0	20	

MATRIX SPIKE SAMPLE:	3549600						
		60453812008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	113	1000	1060	95	70-130	_
Calcium	ug/L	144000	10000	150000	62	70-130 N	/ 11

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

MATRIX SPIKE SAMPLE:	3549600						
Parameter	Units	60453812008 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
							Qualificis
Iron	ug/L	33.4J	10000	10300	102	70-130	
Magnesium	ug/L	30000	10000	39100	91	70-130	
Manganese	ug/L	232	1000	1260	103	70-130	
Potassium	ug/L	2300	10000	12500	102	70-130	
Sodium	ug/L	5820	10000	16000	102	70-130	

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896850 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453819001, 60453819002, 60453819003, 60453819004, 60453819005

METHOD BLANK: 3549612 Matrix: Water

Associated Lab Samples: 60453819001, 60453819002, 60453819003, 60453819004, 60453819005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<6.4	100	6.4	06/07/24 15:57	
Calcium	ug/L	<26.9	200	26.9	06/07/24 15:57	
Iron	ug/L	<9.1	50.0	9.1	06/07/24 15:57	
Magnesium	ug/L	<20.1	50.0	20.1	06/07/24 15:57	
Manganese	ug/L	< 0.39	5.0	0.39	06/07/24 15:57	
Potassium	ug/L	99.7J	500	69.7	06/07/24 15:57	
Sodium	ug/L	287J	500	115	06/07/24 15:57	

LABORATORY CONTROL SAMPLE: 3549613

Date: 07/09/2024 12:09 PM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	946	95	85-115	
Calcium	ug/L	10000	10000	100	85-115	
Iron	ug/L	10000	10400	104	85-115	
Magnesium	ug/L	10000	9990	100	85-115	
Manganese	ug/L	1000	1040	104	85-115	
Potassium	ug/L	10000	9990	100	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 3549	614		3549615							
			MS	MSD								
		60453819001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	74.9J	1000	1000	1040	1060	97	99	70-130	2	20	
Calcium	ug/L	96800	10000	10000	104000	108000	69	115	70-130	4	20	M1
Iron	ug/L	<9.1	10000	10000	10300	10600	103	106	70-130	3	20	
Magnesium	ug/L	22000	10000	10000	31400	32600	94	106	70-130	4	20	
Manganese	ug/L	425	1000	1000	1470	1470	104	104	70-130	0	20	
Potassium	ug/L	4930	10000	10000	15100	15400	101	105	70-130	2	20	
Sodium	ug/L	3830	10000	10000	13800	14200	100	103	70-130	2	20	

MATRIX SPIKE SAMPLE:	3549616						
		60453862001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	317	1000	1280	96	70-130	
Calcium	ug/L	111000	10000	117000	62	70-130 N	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

MATRIX SPIKE SAMPLE:	3549616	_					
Parameter	Units	60453862001 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
- Falailletei			COIIC.	Nesuit	/0 Nec		Qualifiers
Iron	ug/L	295	10000	10900	106	70-130	
Magnesium	ug/L	61300	10000	69500	81	70-130	
Manganese	ug/L	15.7	1000	1050	104	70-130	
Potassium	ug/L	15300	10000	24900	97	70-130	
Sodium	ug/L	254000	10000	256000	21	70-130 N	11

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896743 QC Batch Method: SM 2320B Analysis Method:

SM 2320B

Analysis Description:

Laboratory:

2320B Alkalinity Pace Analytical Services - Kansas City

Associated Lab Samples: 60453812001, 60453812002

METHOD BLANK: 3549169

Associated Lab Samples:

Matrix: Water

60453812001, 60453812002

Blank

Reporting

Parameter Units

Result

Limit

518

Analyzed

Qualifiers

Alkalinity, Total as CaCO3

Alkalinity, Total as CaCO3

mg/L

Units

mg/L

mg/L

<10.5

20.0

10.5 06/05/24 16:02

LABORATORY CONTROL SAMPLE:

Parameter

3549170

Spike Conc.

500

LCS Result

LCS % Rec % Rec Limits

Qualifiers

SAMPLE DUPLICATE: 3549171

Parameter

60453805003 Units Result

265

408

Dup Result

265

413

RPD

0

1

104

MDL

Max **RPD**

10

10

90-110

Qualifiers

Date: 07/09/2024 12:09 PM

Alkalinity, Total as CaCO3

SAMPLE DUPLICATE: 3549172

Parameter Units Alkalinity, Total as CaCO3 mg/L 60453812001 Result

Dup Result

RPD

Max RPD

Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896832 QC Batch Method:

SM 2320B

Analysis Method:

SM 2320B

Analysis Description:

2320B Alkalinity

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60453817001

METHOD BLANK: 3549490

Matrix: Water

Associated Lab Samples: 60453817001

> Blank Result

Reporting

Parameter Units

Limit MDL

Analyzed

Qualifiers

Alkalinity, Total as CaCO3

mg/L

<10.5

20.0

10.5 06/06/24 15:44

LABORATORY CONTROL SAMPLE: 3549491

Parameter

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Alkalinity, Total as CaCO3

Units mg/L

mg/L

500

518

104

10

SAMPLE DUPLICATE: 3549492

Parameter

Alkalinity, Total as CaCO3

Date: 07/09/2024 12:09 PM

60453817003 Units

Result 539

Dup Result 544

RPD

Max **RPD**

90-110

Qualifiers

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 897224 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453819002, 60453819003, 60453819004, 60453819005

METHOD BLANK: 3551323 Matrix: Water

Associated Lab Samples: 60453819002, 60453819003, 60453819004, 60453819005

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <10.5 20.0 10.5 06/08/24 13:39

LABORATORY CONTROL SAMPLE: 3551324

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units mg/L Alkalinity, Total as CaCO3 500 502 100 90-110

SAMPLE DUPLICATE: 3551325

60453717002 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 1880 Alkalinity, Total as CaCO3 mg/L 1730 8 10

SAMPLE DUPLICATE: 3551326

Date: 07/09/2024 12:09 PM

60453957001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 224 226 Alkalinity, Total as CaCO3 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD
Pace Project No.: 60453819

ace i loject No.: 00403019

QC Batch: 897229 QC Batch Method: SM 2320B Analysis Method: SM 2320B Analysis Description: 2320B Alkalir

Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453819001

METHOD BLANK: 3551348 Matrix: Water

Associated Lab Samples: 60453819001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <10.5 20.0 10.5 06/07/24 13:26

LABORATORY CONTROL SAMPLE: 3551349

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 520 104 90-110

SAMPLE DUPLICATE: 3551350

60453818005 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 354 Alkalinity, Total as CaCO3 mg/L 368 4 10

SAMPLE DUPLICATE: 3551351

Date: 07/09/2024 12:09 PM

60453819001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 276 280 10 Alkalinity, Total as CaCO3 mg/L 1

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896436 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453812001, 60453812002, 60453817001

METHOD BLANK: 3548054 Matrix: Water

Associated Lab Samples: 60453812001, 60453812002, 60453817001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 06/03/24 13:04

LABORATORY CONTROL SAMPLE: 3548055

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 931 93 80-120

SAMPLE DUPLICATE: 3548056

60453848004 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 3530 **Total Dissolved Solids** mg/L 10 D6,H1 3930 11

SAMPLE DUPLICATE: 3548057

Date: 07/09/2024 12:09 PM

60453812008 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 481 2 10 mg/L 489

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 896439 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

> Laboratory: Pace Analytical Services - Kansas City

60453819001, 60453819002, 60453819003, 60453819004, 60453819005 Associated Lab Samples:

METHOD BLANK: Matrix: Water

60453819001, 60453819002, 60453819003, 60453819004, 60453819005 Associated Lab Samples:

mg/L

Blank Reporting

MDL Qualifiers Parameter Units Result Limit Analyzed

Total Dissolved Solids <5.0 5.0 5.0 06/04/24 12:47 mg/L

LABORATORY CONTROL SAMPLE: 3548059

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 973 97 80-120

SAMPLE DUPLICATE: 3548060

60453775001 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 2820 **Total Dissolved Solids** 6

2660

10

SAMPLE DUPLICATE: 3548067

Date: 07/09/2024 12:09 PM

60453819001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 381 mg/L 394 3 10

Project: AMEREN SCPD

Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

QC Batch: 897826 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453812001, 60453812002, 60453817001

METHOD BLANK: 3554025 Matrix: Water

Associated Lab Samples: 60453812001, 60453812002, 60453817001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	06/11/24 17:27	
Fluoride	mg/L	<0.12	0.20	0.12	06/11/24 17:27	N2
Sulfate	mg/L	< 0.55	1.0	0.55	06/11/24 17:27	

LABORATORY CONTROL SAMPLE: 3554026 LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.6 92 90-110 mg/L Fluoride 2.5 2.4 98 90-110 N2 mg/L Sulfate 5.2 104 90-110 mg/L 5

MATRIX SPIKE & MATRIX S	SPIKE DUPL	LICATE: 3554	027		3554028							
Parameter	Units	60453805001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	10.1	5	5	18.3	18.3	163	163	80-120	0	15	M1
Fluoride	mg/L	<0.12	2.5	2.5	4.5	4.5	180	179	80-120	0	15	M1,N2
Sulfate	mg/L	25.0	50	50	135	126	220	202	80-120	7	15	M1

MATRIX SPIKE SAMPLE:	3554029						
		60453812008	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	7.8	5	12.5	94	80-120	
Fluoride	mg/L	<0.12	2.5	2.5	102	80-120 I	N 2
Sulfate	mg/L	41.3	50	94.3	106	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN SCPD

Pace Project No.: 60453819

QC Batch: 897827 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60453819001, 60453819002, 60453819003, 60453819004, 60453819005

METHOD BLANK: 3554031 Matrix: Water

Associated Lab Samples: 60453819001, 60453819002, 60453819003, 60453819004, 60453819005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	06/11/24 08:59	
Fluoride	mg/L	<0.12	0.20	0.12	06/11/24 08:59	N2
Sulfate	mg/L	< 0.55	1.0	0.55	06/11/24 08:59	

LABORATORY CONTROL SAMPLE: 3554032

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.8	96	90-110	
Fluoride	mg/L	2.5	2.7	107	90-110	N2
Sulfate	mg/L	5	4.8	97	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 3554	033		3554034							
			MS	MSD								
		60453819001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	2.1	5	5	11.4	11.1	186	180	80-120	3	15	M1
Fluoride	mg/L	0.16J	2.5	2.5	4.9	4.7	191	183	80-120	4	15	M1,N2
Sulfate	mg/L	73.9	50	50	196	172	244	196	80-120	13	15	M1

MATRIX SPIKE & MATRIX SF	IKE DUPL	ICATE: 3554	036		3554037							
			MS	MSD								
		60453805003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	48.7	50	50	107	102	117	106	80-120	5	15	
Fluoride	mg/L	0.13J	2.5	2.5	3.0	2.9	113	111	80-120	2	15 N	\ 2
Sulfate	mg/L	73.1	50	50	129	127	113	108	80-120	2	15	

SAMPLE DUPLICATE: 3554035

Date: 07/09/2024 12:09 PM

		60453819001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	2.1	2.1	0	15	
Fluoride	mg/L	0.16J	0.16J		15	N2
Sulfate	mg/L	73.9	73.6	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD

Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

SAMPLE DUPLICATE: 3554038

Parameter	Units	60453805003 Result	Dup Result	RPD	Max RPD	Qualifiers
Chloride	mg/L	48.7	49.5	1	15	
Fluoride	mg/L	0.13J	0.14J		15	N2
Sulfate	mg/L	73.1	73.4	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCPD Pace Project No.: 60453819

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/09/2024 12:09 PM

B A	analyte was detected in the associated method blank.
-----	--

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

H1 Analysis conducted outside the EPA method holding time.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A N2

complete list of accreditations/certifications is available upon request.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCPD Pace Project No.: 60453819

Date: 07/09/2024 12:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60453812001	S-BMW-1S	EPA 200.7	896847	EPA 200.7	897011
60453812002	S-BMW-3S	EPA 200.7	896847	EPA 200.7	897011
60453817001	S-UG-2	EPA 200.7	896847	EPA 200.7	897011
60453819001	S-TMW-4	EPA 200.7	896850	EPA 200.7	896993
60453819002	S-TMW-5	EPA 200.7	896850	EPA 200.7	896993
60453819003	S-TMW-6	EPA 200.7	896850	EPA 200.7	896993
60453819004	S-SCPD-DUP-1	EPA 200.7	896850	EPA 200.7	896993
60453819005	S-SCPD-FB-1	EPA 200.7	896850	EPA 200.7	896993
60453812001	S-BMW-1S	SM 2320B	896743		
60453812002	S-BMW-3S	SM 2320B	896743		
60453817001	S-UG-2	SM 2320B	896832		
60453819001	S-TMW-4	SM 2320B	897229		
60453819002	S-TMW-5	SM 2320B	897224		
60453819003	S-TMW-6	SM 2320B	897224		
60453819004	S-SCPD-DUP-1	SM 2320B	897224		
60453819005	S-SCPD-FB-1	SM 2320B	897224		
60453812001	S-BMW-1S	SM 2540C	896436		
60453812002	S-BMW-3S	SM 2540C	896436		
60453817001	S-UG-2	SM 2540C	896436		
60453819001	S-TMW-4	SM 2540C	896439		
60453819002	S-TMW-5	SM 2540C	896439		
60453819003	S-TMW-6	SM 2540C	896439		
60453819004	S-SCPD-DUP-1	SM 2540C	896439		
60453819005	S-SCPD-FB-1	SM 2540C	896439		
60453812001	S-BMW-1S	EPA 300.0	897826		
60453812002	S-BMW-3S	EPA 300.0	897826		
60453817001	S-UG-2	EPA 300.0	897826		
60453819001	S-TMW-4	EPA 300.0	897827		
60453819002	S-TMW-5	EPA 300.0	897827		
60453819003	S-TMW-6	EPA 300.0	897827		
60453819004	S-SCPD-DUP-1	EPA 300.0	897827		
60453819005	S-SCPD-FB-1	EPA 300.0	897827		

Pace

DC#_Title: ENV-FRM-LENE-0009_Sample

WO#:60453819

Revision: 2 Effective Date: 01/12/2022 Issued By: Lenexa

Client Name: <u>Rocksmith Geveng</u>			
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □	Pace □ Xroads ☐ Client □ Other □	
Tracking #: Pa	ace Shipping Label Use	d? Yes □ No 🗹	
Custody Seal on Cooler/Box Present: Yes 🗷 No 🗆	Seals intact: Yes	d No□	
Packing Material: Bubble Wrap ☐ Bubble Bags	0-	None ☐ Other ☐	
	of Ice: What Blue No	A d Data and initials of a	0400=
Cooler Temperature (°C): As-read 2·2/2·1 Corr. Fac	ctor <u>O'O</u> Correc	ted 2.2/2.1/1- 4 examining contents:	
Temperature should be above freezing to 6°C /- 4		p 5/30	124
Chain of Custody present:	Yes ONO ON/A	No market	•
Chain of Custody relinquished:	Ves □No □N/A		
Samples arrived within holding time:	Yes Ono On/A		
Short Hold Time analyses (<72hr):	□Yes ZNo □N/A		
Rush Turn Around Time requested:	□Yes No □N/A		
Sufficient volume:	Yes ONO ON/A		
Correct containers used:	Yes ONO ON/A		
Pace containers used:	ØYes □No □N/A		
Containers intact:	Yes ONO ON/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No Z N/A		
Filtered volume received for dissolved tests?	□Yes □No □N/A		
Sample labels match COC: Date / time / ID / analyses	Yes □No □N/A		
Samples contain multiple phases? Matrix: WT	□Yes ZNo □N/A		
Containers requiring pH preservation in compliance?	ŽYes □No □N/A	List sample IDs, volumes, lot #'s of preservati	ve and the
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	67101	date/time added.	
Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOT# Dyanide water sample checks:	: 61161		
ead acetate strip turns dark? (Record only)	□Yes □No		
otassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
rip Blank present:	□Yes □No □M/A		
leadspace in VOA vials (>6mm):	□Yes □No ØN/A		
Samples from USDA Regulated Area: State:	□Yes □No ☑N/A		
additional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ☑N/A		
Client Notification/ Resolution: Copy COC to	-	Field Data Required? Y / N	
erson Contacted: Date/1	Fime:		
comments/ Resolution:			
roject Manager Review:	Date	:	

NaHSO4, (8) Sod. Thiosulfate, (9) Ascorbic Acid, (10) On Ice: **Container Size: {1} 11, [2} 500mt, (3) 250mt, (4) 125mt, (5) 100mt, (6) 40mt vial, (7) EnCore, (8) TerraCore, (9) 90mt, (10) Other Preservation non-conformance identified for *** Preservative Types: (1) None, (2) HNO3, (3) H2SO4, (4) HCl, (5) NaOH, (6) Zn Acetate, (7) Collectede 5-Trass-4 []FedEX []UPS []Other 2-12-11-4 Delivered by: [] In- Person [] Courier Sample Comment Prelog / Bottle Ord. ID: EZ 3087033 AcctNum / Client ID: Profile / Template: Jamie Church ₽ LAB USE ONLY- Affix Workorder/Login Label Here MeOH, (11) Other Proj. Mgr.: Lab Use Only Lab Profile / T 15856 Obs. Temp. ("C) Correction Factor (°C): Customer Remarks / Special Conditions / Possible Hazards: 0.0 Identify Container Preservative Type*** Specify Container Size ** Analysis Requested SISORY Semitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace® Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions. 7499 Date/Time: 5 App III and Cat/An Metals (200.7)* 1 # Coolers: | Other | Othe Results Units Res. Chlorine CHAIN-OF-CUSTODY Analytical Request Document DW PWSID # or WW Permit # as applicable Field Filtered (if applicable): [] Yes [] No Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Cont. (8) 0 0 6 C 6 5 08 0 Nove Collected or Composite End 420 6913 0913 1668 5-28-24 1325 mark haddock@rocksmithgeo.com mark haddock@rocksmithgeo.com 00 3 Time eived by/Company: (Signature) eceived by/Company: (Signature) 135 5-29-24 Missouri 78-34 3 F-29-24 J 5-29-24 5-29-2 1-29-21] Yes Date Printed Name) CLAN Mark Haddock 314-974-6578 Mark Haddock Reportable County / State origin of sample(s): Collected By: Signature: Time 600 B), Vapor (V), Surface Water (SW), Sediment (SED). Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT) Rush (Pre-approval required): Composite Start Contact/Report To: urchase Order # (if Regulatory Program (DW, RCRA, etc.) as applicable: voice E-Mail: applicable): Date T nvoice To: Cc E-Mail: Phone #: Quote #: E-Mail: () S-2 Matrix * Comp / Grab hate/Time: 0 2320 Creve Coeur Mill Road, Maryland Heights, MO []ET ⋈ ₹ ₹ ₹ ₹ ₹ × *- App III and Cat/An Metals* - EPA 200.7: B, Ca, Fe, Mg, Mn, K, Na Pace® Location Requested (City/State) <u>Ե</u> Date Results Requested: 9608 Loiret Blvd., Lenexa, KS 66219 Rocksmith Geoengineering, LLC Rocksm ĮΜ AMEREN SCPD (Event 1) Customer Sample ID Pace Analytical Kansas site Collection Info/Facility ID (as applicable): [] Levelii [] Leveliii [] Leveliiv Ы Additional Instructions from Pace® REMquished by/Company: (Signature) COC# 12 iquished by/Company: (Signature) Time Zone Collected: [] AK 5-BMW-35 elinquished by/Company: (Signature 63043 5-BMW-15 5-116-2 S-SCPD-DUP-1 S-SCPD-MSD-1 Pace S-SCPD-MS-1 ustomer Project #: S-SCPD-FB-1 Data Deliverables: Company Name Street Address: roject Name: S-TMW-4 S-TMW-5 S-TMW-6 [] EQUIS

ENV-FRM-CORQ-0019 v02 110123 @

ejdwes

Pace Analytical Services, LLC

DC#_Title: ENV-FRM-LENE-0001_Sample Container Count Revision: 3 | Effective Date: | Issued by: Lenexa

Client:

Profile #

Other SPLC MPDU **BP3Z** ВЬ3С BP3S BP3F ₩ BP3N ВР1И BP3U Notes BP2U W BP1U Medn MCKU ngen N99∀ VG4N **YC32 ∀**esn UrbA **HrəA** Bein DC9B M690 neod **NG9**N Site DG90 DC9H H69∧ Matrix COC ine Item က 4-

1			Glass			Plastic		N O
MGFU 402 clear soil ar	G9B	40mL bisulfate clear vial	WGKU	8oz clear soil jar	BP1C	11L NAOH plastic	-	Wine/Swab
MG2U 2oz clear soil jar MC3U 4oz unpreserved amber wide MC3U 100mL unpreserved amber wide MC3U 100mL unpreserved amber glass MC3U MC4H 11 HC1 amber glass MC3H MC4H MC3H MC4H MC5H MC4H MC5H	39H	40mL HCl amber voa vial	WGFU	4oz clear soil jar	BP1N	1L HNO3 plastic	SP51	120mL Coliform Na Thiosulfate
March Marc	M65	40mL MeOH clear vial	WG2U	2oz clear soil jar	BP1S	1L H2SO4 plastic	ZPLC	Ziploc Baq
nL H2SO4 amber vial AG0U 100mL unores amber glass BP1Z 1L NaOH, Zn Acetate C nL Na Thio amber vial AG1H 1L HCI amber glass BP2C 500mL NAOH plastic R nL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U nL NO Thio clear vial AG1T 1 Liter unpres amber glass BP2S 500mL H2SO4 plastic U nL NO Thio. clear vial AG2N 500mL HNO3 amber glass BP2D 500mL NaOH, Zn Acetate ACET nL unpreserved clear vial AG2N 500mL H2SO4 amber glass BP3C 500mL NaOH, Zn Acetate WT nnL unpress glass AG3S 500mL H2SO4 amber glass BP3C 250mL HNO3 plastic NAL nnL Unpres Clear glass AG2U 250mL H2SO4 amber glass BP3N 250mL HNO3 plastic NAL nnL Unpres Clear glass AG2U 250mL unpress amber glass BP3D 250mL LASO4 plastic NA nc and plastic AG3U 100mL unpress amber glass BP3Z 250mL LASO4 plastic DW AG3U 100mL u	060	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
nL Na Thio amber vial AG1H 1L HCI amber glass BP2C 500mL NAOH plastic R nL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U nL HCI clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic U nL NO Thio. clear vial AG1U 1liter unpres amber glass BP2U 500mL H2SO4 plastic D nL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2U 500mL NaOH, Zn Acetate Acetate nL unpreserved clear vial AG2N 500mL H2SO4 amber glass BP3C 250mL NaOH, Zn Acetate WT er H2SO4 clear glass AG3S 250mL H2SO4 amber glass BP3F 250mL NAOH plastic NAL JmL HCL Clear glass AG3U 550mL unpres amber glass BP3N 250mL unpreserved plastic NAL JmL HCL Clear glass AG4U 125mL unpres amber glass BP3U 250mL H2SO4 plastic DW AG5U 100mL unpres amber glass BP3C 250mL H2SO4 plastic DW AG5U 100mL unpres amber gl	36S	40mL H2SO4 amber vial	AGOU	100mL unores amber glass	BP1Z	1L NaOH, Zn Acetate	ပ	Air Cassettes
nL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U nL HCl clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2D 500mL H2SO4 plastic U nL Na Thio. clear vial AG1U 1 liter unpress amber glass BP2U 500mL unpreserved plastic MT nL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate WT er H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH, Zn Acetate WT er unpres glass AG3S 250mL H2SO4 amber glass BP3C 250mL HNO3 plastic NAL DML HCL Clear glass AG3U 550mL unpres amber glass BP3D 250mL HNO3 plastic NAL DML Unpres Clear soil jar AG4U 125mL unpres amber glass BP4U 125mL unpreserved plastic DW AG5U AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW AG5U AG5U 100mL unpres amber glass BP4U 125mL HNO3 plastic DW BP4N 125m	39T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2C	500mL NAOH plastic	R	Terracore Kit
nL HCl Clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2D 500mL H2SO4 plastic nL Na Thio. clear vial AG1U 1/liter unpress amber glass BP2U 500mL unpreserved plastic nL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate er H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic WT er unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic WT DML HCL Clear glass AG3U 500mL unpres amber glass BP3N 250mL HNO3 plastic NAL DML Unpres Clear soil jar AG3U 250mL unpres amber glass BP3D 250mL H2SO4 plastic OL AG5U AG3U 100mL unpres amber glass BP3D 250mL H2SO4 plastic WP AG5U AG4U 125mL unpres amber glass BP4U 125mL unpreserved plastic WP BP4N 125mL HNO3 plastic BP4N 125mL HO3 plastic BP4N BP4N BP4N	065	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	⊇	Summa Can
nL Na Thio. clear vial AG1U Iliter unpres amber glass BP2U 500mL unpreserved plastic nL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate er H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic er unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic field filtered WT DML HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL DML Unpres Clear soil jar AG3U 250mL unpres amber glass BP3U 250mL H2SO4 plastic OL DACAU 125mL unpres amber glass BP3D 250mL NO3 plastic DW AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4N 125mL HO3 plastic DW BP4N 125mL H2SO4 plastic BP4S 125mL H2SO4 plastic DW	165 165	40mL HCI clear vial	AG1T	1L Na Thiosulfate clear/amber glass	BP2S	500mL H2SO4 plastic		
nL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate er H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic WT er unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic field filtered WT DmL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL DmL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL H2SO4 plastic OL DmL Unpres Clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4U 125mL HNO3 plastic BP4N 125mL HO3 plastic DW BP4S 125mL H2SO4 plastic BP4S 125mL H2SO4 plastic DW	39T	40mL Na Thio. clear vial	AG1U	1liter unpres amber glass	BP2U	500mL unpreserved plastic	ľ	
er H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3C 250mL NaOH plastic WT er unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT DmL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL DmL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL H2SO4 plastic OL Dz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP AG5U 100mL unpres amber glass BP4U 125mL Unpreserved plastic DW BP4U 125mL HNO3 plastic BP4 125mL HNO3 plastic DW BP4S 125mL H2SO4 plastic BP4S 125mL H2SO4 plastic DW	069	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH, Zn Acetate		
er unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT DmL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL DmL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL Dz clear soil jar AG4U 125mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL H2SO4 plastic DW BP4S 125mL H2SO4 plastic DW WPDU 16oz unpresserved plstic WPDU	31S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3C	250mL NaOH plastic		Matrix
DmL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL DmL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL Dz clear soil jar AG4U 125mL unpres amber glass BP3Z 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL H2SO4 plastic DW WPDU 16oz unpresserved plstic HOPDU	1	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	M	Water
OmL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic IVAL Dz clear soil jar AG4U 125mL unpres amber glass BP3Z 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL H2SO4 plastic WPDU WPDU 16oz unpresserved plstic AVPD	3H	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL H2SO4 plastic WPDU WPDU 16oz unpresserved plstic WPDU	30	250mL Unpres Clear glass	AG3U	250mL unpres amber glass	BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic WPDU 16oz unpresserved plstic	SDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	OF	OIL
BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic			AG5U	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
BP4N BP4S WPDU					BP4U	125mL unpreserved plastic	DW	Drinking Water
BP4S WPDU					BP4N	125mL HNO3 plastic		
WPDU					BP4S	125mL H2SO4 plastic		
					WPDU	16oz unpresserved plstic		

Work Order Number:

To: Project File Project Number: 23009-24

Rocksmith Geoengineering, LLC

CC: Mark Haddock, Jeffrey Ingram

From: Jack Rasmussen@Rocksmithgeo.com

RE: Data Validation Summary, Sioux Energy Center – SCPD – Data Package 60453819

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a compound was detected in a sample result between the Method Detection Limit (MDL) and Practical Quantification Limit (PQL), the results were recorded at the detection value and qualified as estimates (J).
- When a matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J, J+ for estimates based high, and J- for estimates based low).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Company Name: Rocksmith Geoengineering Project Name: Ameren SCPD Reviewer: J. Rasmussen			Project Manager: J. Ingram Project Number: 23009-24					
								Validation Date: 8/7/2024
			Labora	tory: Pace Analytical		SDO	3 #: 604538	19
		— М 2320E						
Matrix:	ct Name. Amerien SCPD							
Sample	Names S-TMW-4, S-TMW-5, S-TMW-6, S-SCPD-DUP-1,	S-SCPD)-FB-1, S-L	JG-2, S-BM\	N-1S, S-BMW-3S			
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the ba	ck please indicate in comment areas).			
Field Ir	nformation	YES	NO	NA	COMMENTS			
a)	Sampling dates noted?	X			05/28/24 - 05/29/24			
b)	Sampling team indicated?	х			JTA, GTM			
c)	Sample location noted?	х						
d)	Sample depth indicated (Soils)?			X				
e)	Sample type indicated (grab/composite)?	х			Grab			
f)	Field QC noted?	х			See Notes			
g)	Field parameters collected (note types)?	х			pH, Spec Cond, Turb, Temp, DO, ORP			
h)		×	\Box	\Box				
i)		nces fr	om field l	oas or field	I notes?			
-,	,			- □				
j)	Does the laboratory parrative indicate deficiencies?			□ X	No lab narrative.			
1/	-		ப ppears tha	_	sults for S-TMW-6 (-003) are incorrectly reoported			
					 			
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS			
a)		×	Ш	Ш				
b)		x		П				
c)	• •			_				
-,								
Genera	al (reference QAPP or Method)	YES	NO	NA	COMMENTS			
		_						
a)		_						
b)	·				See Notes			
c)								
d)	Was the correct method used?	Х						
e)	Were appropriate reporting limits achieved?	Х						
f)	Were any sample dilutions noted?	Х			See Notes			
a)	Were any matrix problems noted?		X					

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks	8	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	х			
b)	Were analytes detected in the field blank(s)?	х			See Notes
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	х			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	Х			See Notes
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	sample r	names)?	S-SCPD-DUP-1 @ S-TMW-5
		х			See Notes
b)	Were field dup. precision criteria met (note RPD)?	х			See Notes
c)	Were lab duplicates analyzed (note original and du	plicate	samples)′	?	
		х			See Notes
d)	Were lab dup. precision criteria met (note RPD)?		х		
Blind 9	Standards	YES	NO	NA	COMMENTS
a)		П		×	
,	analytes included and concentrations)?		_		
b)		П		х	
/		_	_	_	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		x		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?		X		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?	Х			See Notes
Comm	ents/Notes:				
Gene	eral:				
Sulfa	te diluted in some samples, no qualification necess	sary.			

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

Method Blanks:
3549612: potassium (99.7J), sodium (287J), associated with samples -19001 through -19005. Samples -19001, -19002,
-19004, -19005 results > RL and 10x blank, no qualification necessary. Sample -19003 detected below RL, report at RL and
qualified as non-detect (U).
Field Blank:
200.7 metals results are switched between S-TMW-6 (-19003) and S-SCPD-FB-1 (-19005) due to labeling error.
S-SCPD-FB-1 @ S-TMW-6: potassium (93.5J), sodium (194J). Sample results > RL and 10x blank, no qualification necessary.
Duplicates:
Lab duplicate max RPD: 10%: alkalinity, TDS; 15%: chloride, fluoride, sulfate; 20%: ferrous iron, sulfide.
3548056: Lab duplicate exceeds max RPD for TDS, associated with unrelated sample.
MS/MSD:
3549600: MS recovery low for calcium, associated with unrelated sample, no qualification necessary.
3549614/3549615: MS recovery low for calcium, MSD and RPD within control limits, asssociated with sample -19001,
no qualification necessary.
3549616: MS recovery low for calcium and sodium, associated with unrelated sample, no qualification necessary.
3554027/3554028: MS/MSD recovery high for chloride, fluoride, sulfate. Associated with unrelated sample, no qualification necessary.
3554033/3554034: MS/MSD recovery high for chloride, fluoride, sulfate. Associated with sample -19001, results qualified as estimates.

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
S-SCPD-FB-1	Potassium	500	U	Detected in method blank, result < RL
"	Sodium	500	U	Detected in method blank, result < RL
S-TMW-4	Chloride	2.1	J+	MS/MSD recovery high
н	Fluoride	0.16	J+	п
II .	Sulfate	73.9	J+	u .
\				
		1		

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
			1	
			1	
	\			
			\vdash	
			+	
L	Int	_1	_1	08/07/2024

08/07/2024	
	08/07/2024

August 12, 2024

Mark Haddock Rocksmith Geoengineering, LLC. 2320 Creve Coeur Mill Road Maryland Heights, MO 63043

RE: Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory on July 31, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com 314-838-7223 Project Manager

Para Church

Enclosures

cc: Jeffrey Ingram, Rocksmith Geoengineering, LLC. Lisa Meyer, Ameren Grant Morey, Rocksmith Geoengineering, LLC.

CERTIFICATIONS

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60457658001	S-TMW-4	Water	07/29/24 11:34	07/31/24 07:07	
60457658002	S-TMW-5	Water	07/29/24 12:41	07/31/24 07:07	
60457658003	S-TMW-6	Water	07/29/24 12:30	07/31/24 07:07	
60457658004	S-SCPD-DUP-1	Water	07/29/24 00:00	07/31/24 07:07	
60457658005	S-SCPD-FB-1	Water	07/29/24 12:53	07/31/24 07:07	

(913)599-5665

SAMPLE ANALYTE COUNT

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60457658001	S-TMW-4	EPA 300.0	PL	2	PASI-K
60457658002	S-TMW-5	EPA 300.0	PL	2	PASI-K
60457658003	S-TMW-6	EPA 300.0	PL	2	PASI-K
60457658004	S-SCPD-DUP-1	EPA 300.0	PL	2	PASI-K
60457658005	S-SCPD-FB-1	EPA 300.0	PL	2	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Lab ID:	60457658001	Collected	Collected: 07/29/24 11:34			Received: 07/31/24 07:07 Matrix: Water				
Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual		
•			ty							
3.0	mg/L	1.0	0.53	1						
	Results Analytical Pace Anal	Analytical Method: EPA 3 Pace Analytical Services 3.0 mg/L	Results Units PQL Analytical Method: EPA 300.0 Pace Analytical Services - Kansas Ci 3.0 mg/L 1.0	Results Units PQL MDL Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 3.0 mg/L 1.0 0.53	Results Units PQL MDL DF Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 3.0 mg/L 1.0 0.53 1	Results Units PQL MDL DF Prepared Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 3.0 mg/L 1.0 0.53 1	Results Units PQL MDL DF Prepared Analyzed Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City 3.0 mg/L 1.0 0.53 1 08/06/24 14:29	ResultsUnitsPQLMDLDFPreparedAnalyzedCAS No.Analytical Method: EPA 300.0 Pace Analytical Services - Kansas City3.0mg/L1.00.53108/06/24 14:2916887-00-6		

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Sample: S-TMW-5	Lab ID:	60457658002	Collecte	d: 07/29/24	12:41	Received: 07	7/31/24 07:07 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3		ity					
Chloride	2.1	mg/L	1.0	0.53	1		08/08/24 14:50	16887-00-6	
Sulfate	64.6	mg/L	5.0	2.8	5		08/06/24 15:05	14808-79-8	

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Sample: S-TMW-6	Lab ID:	Lab ID: 60457658003			12:30	Received: 07			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3		ity					
Chloride	28.2	mg/L	10.0	5.3	10		08/06/24 17:32	16887-00-6	D6,M1
Sulfate	52.3	mg/L	10.0	5.5	10		08/06/24 17:32	14808-79-8	

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Sample: S-SCPD-DUP-1	Lab ID:	60457658004	Collected	d: 07/29/24	00:00	Received: 07	7/31/24 07:07 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	,	Method: EPA 3		ity					
Chloride Sulfate	28.7 49.4	mg/L mg/L	10.0 10.0	5.3 5.5	10 10		08/06/24 19:04 08/06/24 19:04		

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Sample: S-SCPD-FB-1	Lab ID:	60457658005	Collecte	d: 07/29/24	12:53	Received: 07	7/31/24 07:07 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	•	Method: EPA 3		ity					
Chloride	<0.53	mg/L	1.0	0.53	1		08/06/24 19:22	16887-00-6	
Sulfate	<0.55	mg/L	1.0	0.55	1		08/06/24 19:22	14808-79-8	

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

QC Batch: 904194 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60457658001, 60457658002, 60457658003, 60457658004, 60457658005

METHOD BLANK: 3578340 Matrix: Water

Associated Lab Samples: 60457658001, 60457658002, 60457658003, 60457658004, 60457658005

Blank Reporting MDL Qualifiers Parameter Units Result Limit Analyzed Chloride < 0.53 1.0 0.53 08/06/24 11:06 mg/L Sulfate mg/L < 0.55 1.0 0.55 08/06/24 11:06

METHOD BLANK: 3580377 Matrix: Water

Associated Lab Samples: 60457658001, 60457658002, 60457658003, 60457658004, 60457658005

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	08/08/24 09:44	
Sulfate	mg/L	< 0.55	1.0	0.55	08/08/24 09:44	

LABORATORY CONTROL SAMPLE: 3578341 LCS LCS % Rec Spike Parameter Conc. Result % Rec Limits Qualifiers Units Chloride 5 4.6 92 90-110 mg/L Sulfate 4.7 mg/L 5 93 90-110

LABORATORY CONTROL SAMPLE: 3580378 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 5 4.8 96 90-110 mg/L Sulfate 5 5.1 102 90-110 mg/L

MATRIX SPIKE & MATRIX	SPIKE DUPLI	CATE: 3578	342		3578343							
	6	60457658003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	28.2	50	50	61.9	64.6	67	73	80-120	4	15	M1
Sulfate	mg/L	52.3	50	50	96.2	105	88	106	80-120	9	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

MATRIX SPIKE & MATI	RIX SPIKE DUPI	LICATE: 3578			3578346							
		0045700000	MS	MSD	МС	MCD	MC	MCD	0/ Daa		Mari	
Parameter	Units	60457660002 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	54.4	250	250	248	248	78	77	80-120		15	M1
Sulfate	mg/L	537	250	250	762	736	90	80	80-120	3	15	
MATRIX SPIKE & MATI	RIX SPIKE DUPI	LICATE: 3578	348		3578349							
			MS	MSD								
Parameter	Units	60457662001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride	mg/L	9.0	5	5	11.6	11.5	51	50	80-120	0	15	M1
Sulfate	mg/L	82.2	5	5	88.0	90.3	116	163	80-120	3	15	M1
MATRIX SPIKE & MATI	RIX SPIKE DUPI	LICATE: 3578			3578352							
		60457663003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	34.0	25	25	45.7	45.7	47	47	80-120		15	M1
Sulfate	mg/L	83.3	25	25	108	110	101	105	80-120	1	15	
SAMPLE DUPLICATE:	3578344											
			604576		Dup		_	Max				
Paramete	er 	Units	Res		Result	RPI 		RPD	Qualif	iers		
Chloride		mg/L		28.2 52.3	19.7		35		D6			
Sulfate		mg/L		52.3	47.′	1	11	15	•			
SAMPLE DUPLICATE:	3578347		004570		D			Marri				
Paramete	er	Units	604576 Res		Dup Result	RPI)	Max RPD	Qualif	iers		
Chloride		mg/L		54.4	64.8	 3	17	15	D6			
Sulfate		mg/L		537	499	9	7	15	i			
SAMPLE DUPLICATE:	3578350											
Davarasta		l laita	604576		Dup	חח	,	Max	O. 1011	iore		
Paramete	······································	Units	Res		Result	RPI		RPD	Qualif	iers		
Chloride		mg/L		9.0 82.2	8.9		1 4	15				
Sulfate		mg/L		02.2	85.3)	4	15	•			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

SAMPLE DUPLICATE: 3578353

SAIVII EE DOI EIGATE. 3376333		60457663003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	34.0	31.9	7	15	
Sulfate	mg/L	83.3	81.7	2	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 08/12/2024 03:47 PM

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

(913)599-5665

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCPD - VERIFICATION

Pace Project No.: 60457658

Date: 08/12/2024 03:47 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60457658001	S-TMW-4	EPA 300.0	904194		
60457658002	S-TMW-5	EPA 300.0	904194		
60457658003	S-TMW-6	EPA 300.0	904194		
60457658004	S-SCPD-DUP-1	EPA 300.0	904194		
60457658005	S-SCPD-FB-1	EPA 300.0	904194		

DC#_Title: ENV-FRM-LENE-0009_Sample (

WO#:60457658

AMALYTICAL SERVICES		00437000	
Revision: 2	fective Date: 01/12/2022		
Client Name: Racksmith Geo			
Courier: FedEx □ UPS □ VIA □ Clay □	PEX □ ECI □ Pac	e □ Xroads Z Client □	Other □
	ace Shipping Label Used? `	Yes □ No.□	
Custody Seal on Cooler/Box Present: Yes No 🗆	/	No 🗆	
Packing Material: Bubble Wrap □ Bubble Bags	^	None 🗆 Other 🗆	
	of Ice: Ver Blue None	Date and	initials of person
Cooler Temperature (°C): As-read 1-4 1.0 Corr. Fa	ctor <u>0.6</u> Corrected		g contents:
Temperature should be above freezing to 6°C		po	1131129
Chain of Custody present:	Yes \(\text{No } \(\text{N/A} \)		
Chain of Custody relinquished:	Yes Ono On/A		
Samples arrived within holding time:	✓Yes □No □N/A		
Short Hold Time analyses (<72hr):	□Yes No □N/A		
Rush Turn Around Time requested:	□Yes ØNo □N/A		
Sufficient volume:	Ves □No □N/A		
Correct containers used:	Yes □No □N/A		
Pace containers used:	ZYes □No □N/A		
Containers intact:	ZYes □No □N/A		
Jnpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ☑N/A		
Filtered volume received for dissolved tests?	□Yes □No ØN/A		
Sample labels match COC: Date / time / ID / analyses	Yes Ono On/A		
Samples contain multiple phases? Matrix: WT Containers requiring pH preservation in compliance?	☐Yes ☐No ☐N/A ☐ List s	ample IDs, volumes, lot #'s of	nreservative and th
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)		time added.	proservative and the
Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) LOTE Cyanide water sample checks:	t:		
ead acetate strip turns dark? (Record only)	□Yes □No		
otassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
rip Blank present:	□Yes □No N/A		
leadspace in VOA vials (>6mm):	□Yes □No □N/A		
amples from USDA Regulated Area: State:	□Yes □No ☑N/A		
dditional labels attached to 5035A / TX1005 vials in the field	? □Yes □No ØN/A		
lient Notification/ Resolution: Copy COC t		Field Data Required? Y / N	1
erson Contacted: Date/	Гіте:		
omments/ Resolution:			
roject Manager Review:	Date:		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

equired Che	Required Client Information:	Required Project Information:	oject Info	rmation:					Invoice Info	Invoice Information:	2							Page:	-	of	_
Company:	Rocksmith Geoengineering, LLC	Report To: Mark Haddock	/Jark He	addock					Attention:	2											
Address:	5233 Roanoke Drive	Copy To: J	effery I.	Jeffery Ingram, Grant Morey	3rant M	orey			Compan	Company Name:	Rocksmith	ŧ			REGU	ATOR	REGULATORY AGENCY				
	St. Charles, MO 63304								Address:						Z L	NPDES	I OBO	GROI IND WATER	L	GETANA SINISINISI	MAYATED
Email To:	mark.haddock@rocksmithgeo.com	Purchase Order No :	der No :	COC #2	2				Pace Que	ite:					L	UST			_ L	OTHER	2
Phone: 314	314-974-5678 Fax:	Project Name:		Ameren SCPD - Verification Samp	PD - Ve	ərificatic	in Sampli	pling	Pace Project		Jamie Church	5			Sife	Site Location		I			0000000
quested Di	Requested Due Date/TAT: Standard	Project Number:		COC#2					Pace Pro		15856, line 1	-				STATE:	MO				
				l l									l &	Requested Analysis Filtered (Y/N)	Analys	is Filter	(N/A)				
Seci	Section D Native Client Information WATRIX COL	code			8	COLLECTED				Pre	Preservatives		2 ↑ N /A	Z	z	Z	Z				
	DENGATION WATER WASTE WATER PRODUCT SOU/SOLD OIL	WY SIL	ee valid codes	СОМРО	COMPOSITE START	L	COMPOSITE END/GRAB		_									(N/X)			
TEM#	Sample IDs MUST BE UNIQUE	W R P &		DATE	E E	K .	DATE	F TA GAMPLE TEMP AT C	# OF CONTAINER	HNO ³ H ⁵ 2O ⁴ Dubleselved	A ^{g∑} S ^z O³ HCI	Methanol Other	Analysis Test	silfate				esidual Chlorine	3	5915h0	$\delta \delta$
-	S-TMW-4	2	WT G	⊢		1	7	1	(40)				7			E			race	race rioject No./ Lab I.D.	2.7 Lab I.1
2	S-TMW-5	2	WT G			/	1	241	W				2								
3	S-TMW-6	>	WT G			_	13	336	***					1							
4	S-SCPD-DUP-1	,	WT G		/			1					7	-							
ιΩ	S-SCPD-FB-1	2	Ø ₩		\		(E)	253	0-4				7	7							
9	S-SCPD-MS-1	2	ω ΤΜ		/	7	ارما	236	1				7	_		-			Calecko	3	S-TMW-6
7	S-SCPD-MSD-1	2	ω Μ			,	J 7	230					2							1	
80		2	N M			\dashv															
6		2	WT G	1		-						2									
10		2	Ø ₩	\																	
11		2	ω Μ	1		+															
12			WT G	`.								5									
	ADDITIONAL COMMENTS	-	RELINGL	RELINQUISHED BY / AFFILIATION	Y / AFFIL	IATION		DATE	TIME	ш	A.	CCEPTED BY / AFFILIATION	BY / AFF	LIATION		DATE	TIME		SAMPL	SAMPLE CONDITIONS	SNC
		Jack	7	Row Smith	Swith		1	7-30-24	[12:43	13	Colle	un	ARG ST	Ä	1	12/4	רטרט	1.4	X	X	>
																		(70	X	. X	X
Pa					-																
age					SAM	PLER N.	SAMPLER NAME AND SIGNATURE	SIGNATU	₹E									၁.	(I	oler	tact
16 c						PRII	PRINT Name of	of SAMPLER:	E Gra	7	Mor	/						uj du	bevie: A\Y) e	ustod; ed Co (V/V)	oles Ir (Y/N)
)					_				100	1	1		-	DATE STATE	-	1 11	-	14		1) du

Site:

Profile/EZ#

Ĩ		+	1	+	1	-	-	-		-	-		
	Other		1	t	t	t	t		1			t	
	ZPLC	t		t	T	t	t	T	t	İ	l	t	1
	MPDU	T		T		T	1	t				t	1
	ZE48	T	T	T	T	1	T	T			T	T	1
V	8698			T	T								1
	8698		0	1	1		Ī	T					
ŀ	BP3F		N	1	Ī	T		T		Ī			
	ИЕЧВ		150	1				1					1
	BP1N		1	1	T								1
	DE-30			1					6			T	
Notes	US98 -		. 16	1-	-								
	Urqa												
	MeDU												
	мекп												
	neen												
	AG5U												
	U494												
	SE9A												
	NGSU												
	UrəA												
	нгәѧ												
	Bein												
	DG9B												
	DG9W												
	D690												
	U69V												
Site	D690												П
	Н6ЭО												
	Н6ЭЛ												
	xintsM 7	-			1/	•							ontainer Codes
	COC ne Item	2	m	4	2	9	7	8	თ	10	1	12	ntaine

40mL bisulfate clear vial WGKU 8x clear soil ar BPTB 11 NAOH plastic 1 FORDIC Displastic 2 FDE TIPLION DISPLANCE			Glass			Plastic		Coin
40mL HCl amber voa vial WGFU 40z clear soil jar BP1N 11 HNO3 plastic SP5T 40mL McOH clear vial WGCU 2cz clear soil jar BP1S 11 H2SO4 plastic ZPLC 40mL McOH clear vial 4GCU 4oz unpreserved amber wide BP1Z 11 L NOH, Zn Acetate C 40mL Na Thio amber vial AG1H 11 L HCl amber glass BP2B 500mL NAOH plastic C 40mL Na Thio amber vial AG1F 11 L HZSO4 amber glass BP2B 500mL NAOH plastic R 40mL Na Thio clear vial AG1F 11 L Na Thiosuffate clear/amber glass BP2B 500mL NAOH plastic U 40mL Na Thio clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate U 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate NA 1 liter unpres glass AG2S 500mL HNO3 amber glass BP3Z 250mL NaOH, Zn Acetate SL 250mL Unpres glass AG3U 250mL HNO3 plastic NA NA 250mL Unpres amber glass BP3A	DG9B	40mL bisulfate clear vial	WGKU		BP1B	11 NAOH plastic	-	Wine/Swah
40mL MeOH clear vial WG2U 2oz clear soil jar BP1S 1L H2SO4 plastic ZPLC 40mL TSP amber vial JGFU 4oz unpreserved amber wide BP1U 1L unpreserved plastic AF 40mL HSO4 amber vial AG1H 1L HCI amber glass BP1Z 1L NaOH, Zh Acetate C 40mL Na Thio amber vial AG1H 1L H2SO4 amber glass BP2B 500mL NAOH plastic U 40mL HCI clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2N 500mL NAOH plastic U 40mL HCI clear vial AG2U 1liter unpres amber glass BP2D 500mL NAOH, Zn Acetate 40mL Na Thio. clear vial AG2U 1liter unpres amber glass BP2D 500mL NAOH, Zn Acetate 40mL will be adapted to clear vial AG2N 500mL HNO3 amber glass BP2D 500mL NAOH plastic 1 liter unpres glass AG2N 500mL H2SO4 amber glass BP3E 250mL NAOH plastic NAL 2 50mL HACS 500mL H2SO4 amber glass BP3E 250mL HACO3 plastic NA 2 50mL HORPS AG3U 250mL H2SO4 amber glass BP3E </td <td>DG9H</td> <td>40mL HCl amber voa vial</td> <td>WGFU</td> <td></td> <td>BP1N</td> <td>1L HNO3 plastic</td> <td>SP5T</td> <td>120ml Coliform Na Thiosulfate</td>	DG9H	40mL HCl amber voa vial	WGFU		BP1N	1L HNO3 plastic	SP5T	120ml Coliform Na Thiosulfate
40mL TSP amber vial JGFU 4oz unpreserved amber wide BP1U 11 unpreserved plastic AF 40mL H2SO4 amber vial AG0U 100mL unores amber glass BP1Z 11 NaOH, Zn Acetate C 40mL Na Thio amber vial AG1H 11 HCSO4 amber glass BP2R 500mL NAOH plastic U 40mL Ma Thio amber vial AG1T 11 L Na Thiosulfate clear/amber glass BP2R 500mL HNO3 plastic U 40mL HCI clear vial AG2T 11 L Na Thiosulfate clear/amber glass BP2D 500mL HNO3 plastic U 40mL HCI clear vial AG2U 11iter unpresserved clear vial AG2U 11iter unpresserved plastic MT 40mL HCI clear glass AG2U 500mL HNO3 amber glass BP2Z 500mL unpresserved plastic MT 11iter H2SO4 clear glass AG2S 500mL HNO3 amber glass BP3F 250mL HNO3 plastic MT 250mL HCL Clear glass AG2U 500mL unpresserved plastic MT AG2U 500mL unpresserved plastic MT 250mL Unpres Glear glass AG3U 125mL unpresserved plastic MV AG3U <td< td=""><td>DG9M</td><td>40mL MeOH clear vial</td><td>WG2U</td><td></td><td>BP1S</td><td>1L H2SO4 plastic</td><td>ZPIC</td><td>Zinloc Ban</td></td<>	DG9M	40mL MeOH clear vial	WG2U		BP1S	1L H2SO4 plastic	ZPIC	Zinloc Ban
40mL H2SO4 amber vial AG0U 100mL unores amber glass BP1Z 1L NaOH, Zn Acetate C 40mL Na Thio amber vial AG1H 1L HCI amber glass BP2B 500mL NAOH plastic R 40mL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL NAOH plastic U 40mL HCI clear vial AG1T 11 In a Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic U 40mL unpreserved clear vial AG2T 11 iter unpres amber glass BP2D 500mL NaOH, Zn Acetate D 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP3B 250mL NaOH, Diastic D 11iter H2SO4 clear glass AG2B 500mL H2SO4 amber glass BP3B 250mL NaOH, Diastic SL 250mL HCI Clear glass AG2B 500mL H2SO4 amber glass BP3B 250mL NaOH, Diastic SL 250mL HCI Clear glass AG3B 250mL HNO3 plastic SL SL 250mL HCI Clear glass AG3U 500mL LD ADH, SOA plastic DL 350mL HCI Clear glass AG3U 250mL unpreserved plastic	DG90	40mL TSP amber vial	JGFU	4oz unpreserved amber wide	BP1U	1L unpreserved plastic	AF	Air Filter
40mL Na Thio amber vial AG1H 1L HCl amber glass BP2B 500mL NAOH plastic R 40mL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U 40mL HCl clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic U 40mL Na Thio. clear vial AG2U 1liter unpres amber glass BP2D 500mL NaOH, Zn Acetate Acetate 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2D 500mL NaOH, Zn Acetate Acetate 40mL unpreserved clear vial AG2N 500mL H2SO4 amber glass BP3B 250mL NaOH plastic SL 1 lifer unpres glass AG3S 250mL H2SO4 amber glass BP3B 250mL HNO3 plastic SL 2 50mL Unpres Clear glass AG3U 250mL unpres amber glass BP3D 250mL HNO3 plastic DW J 16cc clear soil jar AG4U 125mL unpres amber glass BP4N 125mL unpreserved plastic DW BP4N 125mL unpreserved plastic BP4N 125mL unpreserved plastic DW BP4S	DG9S	40mL H2SO4 amber vial	AGOU	100mL unores amber glass	BP1Z	1L NaOH. Zn Acetate	0	Air Cassettes
40mL amber unpreserved AG1S 1L H2SO4 amber glass BP2N 500mL HNO3 plastic U 40mL HCl clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic U 40mL Na Thio. clear vial AG1U 1 liter unpres amber glass BP2U 500mL unpreserved plastic AG2N 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP3B 250mL NaOH, Zn Acetate MT 1 liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3B 250mL NaOH plastic MT 250mL HCL Clear glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic NAL 250mL HCL Clear glass AG3U 250mL unpres amber glass BP3B 250mL HNO3 plastic NAL 250mL Unpres Clear soil jar AG3U 250mL unpres amber glass BP3D 250mL HNO3 plastic NA 1 f6oz clear soil jar AG3U 125mL unpres amber glass BP3D 250mL HO4H, Zn Acetate NP AG5U 100mL unpres amber glass BP3C 250mL HO4H, Zn Acetate NP AG5U	DG9T	40mL Na Thio amber vial	AG1H	1L HCl amber glass	BP2B	500mL NAOH plastic	œ	Terracore Kit
40mL HCl clear vial AG1T 1L Na Thiosulfate clear/amber glass BP2S 500mL H2SO4 plastic 40mL Na Thio. clear vial AG1U 1liter unpres amber glass BP2U 500mL unpreserved plastic 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate 1 liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3B 250mL NaOH plastic 1 liter unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3H 250mL HNO3 plastic NAL J f6oz clear soil jar AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NA J f6oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP J f6oz clear soil jar AG5U 100mL unpres amber glass BP4U 125mL HNO3 plastic DW BP4N 125mL HNO3 plastic BP4N 125mL HNO3 plastic BP4N BP4N 125mL H2SO4 plastic	D@90	40mL amber unpreserved	AG1S	1L H2SO4 amber glass	BP2N	500mL HNO3 plastic	2	Summa Can
40mL Na Thio. clear vial AG1U Iliter unpres amber glass BP2U 500mL unpreserved plastic 40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate 1 liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3B 250mL NaOH plastic 250mL HCL Clear glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic NAL 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3H 250mL unpreserved plastic NAL J f6oz clear soil jar AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL J f6oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP J f6oz clear soil jar AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4N 125mL HNO3 plastic BP4N BP4N 125mL H2SO4 plastic	VG9H	40mL HCl clear vial	AG1T	1L Na Thiosulfate clear/amber glass		500mL H2SO4 plastic		
40mL unpreserved clear vial AG2N 500mL HNO3 amber glass BP2Z 500mL NaOH, Zn Acetate 1 liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3B 250mL NaOH plastic 1 liter unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic WT 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic NAL J 16oz clear soil jar AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic OL J 16oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP J 16oz clear soil jar AG5U 100mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP BP4U 125mL HNO3 plastic BP4U 125mL HNO3 plastic DW BP4S 125mL HNO3 plastic BP4S 125mL H2SO4 plastic BP4S	VG9T	40mL Na Thio, clear vial	AG1U	1liter unpres amber glass		500mL unpreserved plastic		
1liter H2SO4 clear glass AG2S 500mL H2SO4 amber glass BP3B 250mL NaOH plastic WT 250mL H2SO4 amber glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic WT 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL J 16oz clear soil jar AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic OL J 16oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL NaOH, Zn Acetate WP J 6oz clear soil jar AG5U 100mL unpres amber glass BP4U 125mL HNO3 plastic DW BP4N 125mL HNO3 plastic BP4N 125mL HNO3 plastic BP4N BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic BP4S 125mL H2SO4 plastic BP4S 125mL H2SO4 plastic	VG9U	40mL unpreserved clear vial	AG2N	500mL HNO3 amber glass	BP2Z	500mL NaOH. Zn Acetate		
1liter unpres glass AG3S 250mL H2SO4 amber glass BP3F 250mL HNO3 plastic - field filtered WT 250mL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL J 16oz clear soil jar AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL J 16oz clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BWP BP4N 125mL HNO3 plastic BP4S 125mL HNO3 plastic BWP 125mL H2SO4 plastic BWP	BG1S	1liter H2SO4 clear glass	AG2S	500mL H2SO4 amber glass	BP3B	250mL NaOH plastic	Г	Matrix
nL HCL Clear glass AG2U 500mL unpres amber glass BP3N 250mL HNO3 plastic SL nL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL HNO3 plastic BP4S WPDU 165mL H2SO4 plastic WPDU	BG10	1liter unpres glass	AG3S	250mL H2SO4 amber glass	BP3F	250mL HNO3 plastic - field filtered	×	Water
nL Unpres Clear glass AG3U 250mL unpres amber glass BP3U 250mL unpreserved plastic NAL clear soil jar AG4U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic DW BP4S 125mL HNO3 plastic AMPDU WPDU 160z unpresserved plstic AMPDU	ВСЗН	250mL HCL Clear glass	AG2U	500mL unpres amber glass	BP3N	250mL HNO3 plastic	SL	Solid
clear soil jar AG5U 125mL unpres amber glass BP3S 250mL H2SO4 plastic OL AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BW BP4S 125mL H2SO4 plastic WPDU WPDU 16oz unpresserved plstic MPDU	BG3U	250mL Unpres Clear glass	AG3U		BP3U	250mL unpreserved plastic	NAL	Non-aqueous Liquid
AG5U 100mL unpres amber glass BP3Z 250mL NaOH, Zn Acetate WP BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic MPDU 16oz unpresserved plstic	WGDU	16oz clear soil jar	AG4U	125mL unpres amber glass	BP3S	250mL H2SO4 plastic	ОГ	OIL
BP4U 125mL unpreserved plastic DW BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic			AGSU	100mL unpres amber glass	BP3Z	250mL NaOH, Zn Acetate	WP	Wipe
BP4N 125mL HNO3 plastic BP4S 125mL H2SO4 plastic WPDU 16oz unpresserved plstic					BP4U	125mL unpreserved plastic	DW	Drinking Water
BP4S WPDU					BP4N	125mL HNO3 plastic		
WPDU					BP4S	125mL H2SO4 plastic		
					WPDU	16oz unpresserved plstic		

Work Order Number:

Qualtrax ID: 30422

Pace® Analytical Services, LLC

To: Project File Project Number: 23009-24

Rocksmith Geoengineering, LLC

CC: Mark Haddock, Jeffrey Ingram

From: Jack Rasmussen@rocksmithgeo.com

RE: Data Validation Summary, Sioux Energy Center – SCPD – Data Package 60457658

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).
- When a matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J, J+ for estimates based high, and J- for estimates based low). When matrix spike recovery was less than 10%, and the associated sample result was a non-detect, the result was rejected (R).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compai	ny Name: Rocksmith Geoengineering		Proj	ect Manag	er: J. Ingram
Project	Name: Ameren SCPD - Verification	_	Proj	ect Numbe	er: 23009-24
Review	er: J. Rasmussen	_			e: 08/14/2024
	ory: Pace Analytical		SDG	604576	58
Analytic	al Method (type and no.): EPA 300.0 (Anions)				
	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste				
Sample	Names S-TMW-4, S-TMW-5, S-TMW-6, S-SCPD-DUP-1, S	S-SCPD	-FB-1		
NOTE:	Please provide calculation in Comment areas or	on the	hack (if	on the had	ck nlease indicate in comment areas)
	formation	YES	NO	NA	COMMENTS
a)	Sampling dates noted?	X			07/29/2024
b)	Sampling team indicated?	×			GTM/JTR
,	Sample location noted?	×			
c)	Sample location noted? Sample depth indicated (Soils)?			×	-
d)	, ,			_	
e)	Sample type indicated (grab/composite)?	×			See Notes
f)	Field QC noted?	×			
g)	Field parameters collected (note types)?	×			pH, Spec Cond, Turb, Temp, DO, ORP
h)	Field Calibration within control limits?	X	Ш		
i)	Notations of unacceptable field conditions/performa	nces fro	om field lo	ogs or field	notes?
			X		
j)	Does the laboratory narrative indicate deficiencies?			х	No lab narrative.
	Note Deficiencies:				
Chain-c	of-Custody (COC)	YES	NO	NA	COMMENTS
Onam-c	on-outloay (GGG)		110	IVA	30MMENTO
a)	Was the COC properly completed?	X			
b)	Was the COC signed by both field				
	and laboratory personnel?	×			
c)	Were samples received in good condition?	х	Ш	Ш	
Genera	I (reference QAPP or Method)	YES	NO	NA	COMMENTS
a)	Were hold times met for sample pretreatment?	X			
b)	Were hold times met for sample analysis?	X			
c)	Were the correct preservatives used?	х			
d)	Was the correct method used?	×			
e)	Were appropriate reporting limits achieved?	×			
f)	Were any sample dilutions noted?	×			See Notes
g)	Were any matrix problems noted?		×		

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks		YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?		х		
b)	Were analytes detected in the field blank(s)?		х		
c)	Were analytes detected in the equipment blank(s)?			х	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	tory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	Х			
c)	Was the LCS accuracy criteria met?	Х			
Duplica	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du				S-SCPD-DUP-1 @ S-TMW-4
/	consense (note on ginar and on	×	□	П	See Notes
b)	Were field dup. precision criteria met (note RPD)?		×		See Notes
c)	Were lab duplicates analyzed (note original and du	olicate	_	_	
٠,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	X	ла р э., .		
d)	Were lab dup. precision criteria met (note RPD)?		×		See Notes
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			х	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA	COMMENTS
a)	Was MS accuracy criteria met?		X		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			×	
b)	Was MSD accuracy criteria met?		х		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?	Х			
Comm	ents/Notes:				
Gene	ral:				
Chlor	ide and/or sulfate diluted in some samples, no qua	lification	on necess	sary.	
Dupli	cate.				
	PD-DUP-1 @ S-TMW-4: field duplicate RPD exce	eds co	ontrol limi	it (20%) fo	r chloride (162%) and sulfate (33%), results
	ied as estimates.			(_0,70)	(102.0) and canalo (00.0), 100010

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

Lab duplicate max RPD: 10%: TDS; 15%: chloride, sulfate.
3578344: Lab duplicate exceeds max RPD for chloride, associated with sample -003, results qualified as estimates.
3578347: Lab duplicate exceeds max RPD for chloride, associated with unrelated sample, no qualification necessary.
MS/MSD:
3578342/3578343: MS and MSD recovery low for chloride, RPD okay. Associated with sample -003, result qualified as estimates.
3578345/3578346: MS and MSD recovery low for chloride, RPD okay. Associated with unrelated sample.
3578348/3578349: MS and MSD recovery low for chloride, RPD okay. MSD recovery high for sulfate, MS and RPD okay.
Associated with unrelated sample, no qualification estimates.
3578351/3578352: MS and MSD recovery low for chloride, RPD okay. Associated with unrelated sample.
Value in the contract of the c

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
S-TMW-4	Chloride	3.0	J	Field DUP exceeds control limits
S-SCPD-DUP-1	"	28.7	J	II .
S-TMW-4	Sulfate	69.2	J	II .
S-SCPD-DUP-1	"	49.4	J	II .
S-TMW-6	Chloride	28.2	J	Lab DUP RPD exceeds control limits
S-TMW-6	"	28.2	J-	MS and MSD recovery low, RPD okay
		-		

Signature:	Int		Date: 08/14/2024

December 24, 2024

Mark Haddock Rocksmith Geoengineering, LLC. 2320 Creve Coeur Mill Road Maryland Heights, MO 63043

RE: Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Dear Mark Haddock:

Enclosed are the analytical results for sample(s) received by the laboratory between November 15, 2024 and November 21, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Kansas City

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jamie Church jamie.church@pacelabs.com

314-838-7223 Project Manager

Enclosures

cc: Jeffrey Ingram, Rocksmith Geoengineering, LLC.

Lisa Meyer, Ameren

Grant Morey, Rocksmith Geoengineering, LLC.

Austin Nieman, Ameren

CERTIFICATIONS

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Pace Analytical Services Kansas

9608 Loiret Boulevard, Lenexa, KS 66219 Arkansas Certification #: 88-00679 Illinois Certification #: 2000302023-6 Colorado Division of Oil and Public Safety

Iowa Certification #: 118

Kansas Field Laboratory Certification #: E-92587

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055

Missouri Inorganic Drinking Water Certification Nevada Certification #: KS000212024-1 Oklahoma Certification #: 2023-073 Texas Certification #: T104704407-23-17 Utah Certification #: KS000212022-13

SAMPLE SUMMARY

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60465166001	S-TMW-4	Water	11/19/24 09:08	11/21/24 10:01
60465166002	S-TMW-5	Water	11/19/24 10:01	11/21/24 10:01
60465166003	S-TMW-6	Water	11/19/24 11:07	11/21/24 10:01
60465166004	S-SCPD-DUP-1	Water	11/19/24 00:00	11/21/24 10:01
60465166005	S-SCPD-FB-1	Water	11/19/24 09:59	11/21/24 10:01
60464704001	S-UG-2	Water	11/14/24 12:12	11/15/24 05:55
60464699012	S-BMW-3S	Water	11/20/24 11:43	11/21/24 07:45
60464699011	S-BMW-1S	Water	11/20/24 09:00	11/21/24 07:45

SAMPLE ANALYTE COUNT

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
60465166001	S-TMW-4	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0465166002	S-TMW-5	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0465166003	S-TMW-6	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
S0465166004 S-SCPD-DUP-1	S-SCPD-DUP-1	EPA 200.7	ARMN	7	PASI-K
	SM 2320B	TML	1	PASI-K	
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0465166005	S-SCPD-FB-1	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0464704001	S-UG-2	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0464699012	S-BMW-3S	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K
0464699011	S-BMW-1S	EPA 200.7	ARMN	7	PASI-K
		SM 2320B	TML	1	PASI-K
		SM 2540C	TML	1	PASI-K
		EPA 300.0	AAA	3	PASI-K

PASI-K = Pace Analytical Services - Kansas City

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-TMW-4	Lab ID:	60465166001	Collected:	11/19/24	09:08	Received: 11/	/21/24 10:01 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	100	ug/L	100	6.4	1	11/22/24 08:54	12/10/24 17:12	7440-42-8	
Calcium	116000	ug/L	200	26.9	1	11/22/24 08:54	12/10/24 17:12	7440-70-2	
Iron	23.7J	ug/L	50.0	9.1	1	11/22/24 08:54	12/10/24 17:12	7439-89-6	В
Magnesium	31100	ug/L	50.0	20.1	1	11/22/24 08:54	12/10/24 17:12	7439-95-4	
Manganese	745	ug/L	5.0	0.39	1	11/22/24 08:54	12/10/24 17:12	7439-96-5	
Potassium	6820	ug/L	500	69.7	1	11/22/24 08:54	12/10/24 17:12	7440-09-7	
Sodium	5900	ug/L	500	115	1	11/22/24 08:54	12/10/24 17:12	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas City	y					
Alkalinity, Total as CaCO3	355	mg/L	20.0	10.5	1		12/02/24 15:24		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	484	mg/L	10.0	10.0	1		11/26/24 15:38		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	2.4	mg/L	1.0	0.53	1		12/03/24 18:19	16887-00-6	
Fluoride	0.43	mg/L	0.20	0.12	1		12/03/24 18:19	16984-48-8	
Sulfate	58.1	mg/L	10.0	5.5	10		12/03/24 18:32	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-TMW-5	Lab ID:	60465166002	Collected	: 11/19/24	10:01	Received: 11/	21/24 10:01 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	72.5J	ug/L	100	6.4	1	11/22/24 08:54	12/10/24 17:19	7440-42-8	
Calcium	99800	ug/L	200	26.9	1	11/22/24 08:54	12/10/24 17:19	7440-70-2	
Iron	25.0J	ug/L	50.0	9.1	1	11/22/24 08:54	12/10/24 17:19	7439-89-6	В
Magnesium	18700	ug/L	50.0	20.1	1	11/22/24 08:54	12/10/24 17:19	7439-95-4	
Manganese	795	ug/L	5.0	0.39	1	11/22/24 08:54	12/10/24 17:19	7439-96-5	
Potassium	4750	ug/L	500	69.7	1	11/22/24 08:54	12/10/24 17:19	7440-09-7	
Sodium	3710	ug/L	500	115	1	11/22/24 08:54	12/10/24 17:19	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas Cit	y					
Alkalinity, Total as CaCO3	267	mg/L	20.0	10.5	1		12/02/24 15:41		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	405	mg/L	10.0	10.0	1		11/26/24 15:38		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
·	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	1.5	mg/L	1.0	0.53	1		12/04/24 22:40	16887-00-6	
Fluoride	0.40	mg/L	0.20	0.12	1		12/04/24 22:40	16984-48-8	
Sulfate	83.9	mg/L	10.0	5.5	10		12/04/24 23:08	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-TMW-6	Lab ID:	60465166003	Collected	d: 11/19/24	11:07	Received: 11/	21/24 10:01 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ty					
Boron	106	ug/L	100	6.4	1	11/22/24 08:54	12/10/24 17:21	7440-42-8	
Calcium	133000	ug/L	200	26.9	1	11/22/24 08:54	12/10/24 17:21	7440-70-2	
Iron	22.6J	ug/L	50.0	9.1	1	11/22/24 08:54	12/10/24 17:21	7439-89-6	В
Magnesium	27300	ug/L	50.0	20.1	1	11/22/24 08:54	12/10/24 17:21	7439-95-4	
Manganese	508	ug/L	5.0	0.39	1	11/22/24 08:54	12/10/24 17:21	7439-96-5	
Potassium	29500	ug/L	500	69.7	1	11/22/24 08:54	12/10/24 17:21	7440-09-7	
Sodium	4790	ug/L	500	115	1	11/22/24 08:54	12/10/24 17:21	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas C	ty					
Alkalinity, Total as CaCO3	428	mg/L	20.0	10.5	1		12/02/24 15:47		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ty					
Total Dissolved Solids	556	mg/L	13.3	13.3	1		11/26/24 15:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Kansas C	ty					
Chloride	5.1	mg/L	1.0	0.53	1		12/04/24 08:46	16887-00-6	
Fluoride	0.30	mg/L	0.20	0.12	1		12/04/24 08:46	16984-48-8	M1
Sulfate	44.5	mg/L	5.0	2.8	5		12/04/24 08:58	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-SCPD-DUP-1	Lab ID:	60465166004	Collected	11/19/24	00:00	Received: 11/	/21/24 10:01 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EP/	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	98.3J	ug/L	100	6.4	1	11/22/24 08:54	12/10/24 17:23	7440-42-8	
Calcium	114000	ug/L	200	26.9	1	11/22/24 08:54	12/10/24 17:23	7440-70-2	
Iron	<9.1	ug/L	50.0	9.1	1	11/22/24 08:54	12/10/24 17:23	7439-89-6	
Magnesium	30500	ug/L	50.0	20.1	1	11/22/24 08:54	12/10/24 17:23	7439-95-4	
Manganese	726	ug/L	5.0	0.39	1	11/22/24 08:54	12/10/24 17:23	7439-96-5	
Potassium	6720	ug/L	500	69.7	1	11/22/24 08:54	12/10/24 17:23	7440-09-7	
Sodium	5800	ug/L	500	115	1	11/22/24 08:54	12/10/24 17:23	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	20B						
	Pace Anal	ytical Services	- Kansas Cit	y					
Alkalinity, Total as CaCO3	350	mg/L	20.0	10.5	1		12/02/24 16:00		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
		ytical Services		y					
Total Dissolved Solids	490	mg/L	10.0	10.0	1		11/26/24 15:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	2.5	mg/L	1.0	0.53	1		12/04/24 11:45	16887-00-6	
Fluoride	0.44	mg/L	0.20	0.12	1		12/04/24 11:45	16984-48-8	
Sulfate	56.2	mg/L	5.0	2.8	5		12/04/24 11:58	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-SCPD-FB-1	Lab ID:	60465166005	Collected	: 11/19/24	09:59	Received: 11/	21/24 10:01 Ma	atrix: Water	
Parameters	Results	Units	PQL _	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	•	Method: EPA 2	•		od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	у					
Boron	<6.4	ug/L	100	6.4	1	11/22/24 08:54	12/10/24 17:24	7440-42-8	
Calcium	32.8J	ug/L	200	26.9	1	11/22/24 08:54	12/10/24 17:24	7440-70-2	В
Iron	<9.1	ug/L	50.0	9.1	1	11/22/24 08:54	12/10/24 17:24	7439-89-6	
Magnesium	<20.1	ug/L	50.0	20.1	1	11/22/24 08:54	12/10/24 17:24	7439-95-4	
Manganese	<0.39	ug/L	5.0	0.39	1	11/22/24 08:54	12/10/24 17:24	7439-96-5	
Potassium	<69.7	ug/L	500	69.7	1	11/22/24 08:54	12/10/24 17:24	7440-09-7	
Sodium	163J	ug/L	500	115	1	11/22/24 08:54	12/10/24 17:24	7440-23-5	В
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	 Kansas Cit 	у					
Alkalinity, Total as CaCO3	<10.5	mg/L	20.0	10.5	1		12/02/24 16:26		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas Cit	у					
Total Dissolved Solids	<5.0	mg/L	5.0	5.0	1		11/26/24 15:39		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	у					
Chloride	<0.53	mg/L	1.0	0.53	1		12/04/24 12:24	16887-00-6	
Fluoride	0.22	mg/L	0.20	0.12	1		12/04/24 12:24	16984-48-8	
Sulfate	<0.55	mg/L	1.0	0.55	1		12/04/24 12:24	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-UG-2	Lab ID:	Collected	Collected: 11/14/24 12:12			Received: 11/15/24 05:55 Matrix: Water			
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	ration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	112	ug/L	100	6.4	1	11/18/24 09:30	12/04/24 12:53	7440-42-8	
Calcium	90800	ug/L	200	26.9	1	11/18/24 09:30	12/04/24 12:53	7440-70-2	
Iron	10.9J	ug/L	50.0	9.1	1	11/18/24 09:30	12/04/24 12:53	7439-89-6	
Magnesium	18800	ug/L	50.0	20.1	1	11/18/24 09:30	12/04/24 12:53	7439-95-4	
Manganese	19.5	ug/L	5.0	0.39	1	11/18/24 09:30	12/04/24 12:53	7439-96-5	
Potassium	4560	ug/L	500	69.7	1	11/18/24 09:30	12/04/24 12:53	7440-09-7	
Sodium	36200	ug/L	500	115	1	11/18/24 09:30	12/04/24 12:53	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	326	mg/L	20.0	10.5	1		11/27/24 17:39		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	409	mg/L	10.0	10.0	1		11/19/24 12:19		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	26.5	mg/L	5.0	2.6	5		11/30/24 18:48	16887-00-6	
Fluoride	0.29	mg/L	0.20	0.12	1		11/30/24 18:35	16984-48-8	
Sulfate	29.4	mg/L	5.0	2.8	5		11/30/24 18:48	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-BMW-3S	Lab ID:	60464699012	Collecte	d: 11/20/24	11:43	Received: 11/	/21/24 07:45 M	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepa	aration Meth	od: EP	A 200.7			
	Pace Anal	ytical Services	- Kansas C	ity					
Boron	57.3J	ug/L	100	6.4	1	11/22/24 09:01	12/10/24 11:21	7440-42-8	
Calcium	113000	ug/L	200	26.9	1	11/22/24 09:01	12/10/24 11:21	7440-70-2	
Iron	28.9J	ug/L	50.0	9.1	1	11/22/24 09:01	12/10/24 11:21	7439-89-6	
Magnesium	19800	ug/L	50.0	20.1	1	11/22/24 09:01	12/10/24 11:21	7439-95-4	
Manganese	268	ug/L	5.0	0.39	1	11/22/24 09:01	12/10/24 11:21	7439-96-5	
Potassium	452J	ug/L	500	69.7	1	11/22/24 09:01	12/10/24 11:21	7440-09-7	
Sodium	5840	ug/L	500	115	1	11/22/24 09:01	12/10/24 11:21	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas C	ity					
Alkalinity, Total as CaCO3	166	mg/L	20.0	10.5	1		12/02/24 17:03		
2540C Total Dissolved Solids	Analytical	Method: SM 25	40C						
	Pace Anal	ytical Services	- Kansas C	ity					
Total Dissolved Solids	413	mg/L	10.0	10.0	1		11/27/24 17:57		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas C	ity					
Chloride	13.1	mg/L	1.0	0.53	1		12/14/24 18:00	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		12/14/24 18:00	16984-48-8	
Sulfate	17.1	mg/L	1.0	0.55	1		12/14/24 18:00	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Sample: S-BMW-1S	Lab ID:	60464699011	Collected	11/20/24	09:00	Received: 11/	/21/24 07:45 Ma	atrix: Water	
Parameters	Results	Units	PQL	MDL	DF	Prepared	Analyzed	CAS No.	Qual
200.7 Metals, Total	Analytical	Method: EPA 2	00.7 Prepar	ation Meth	od: EPA	A 200.7			
	Pace Anal	ytical Services	- Kansas Cit	y					
Boron	61.9J	ug/L	100	6.4	1	11/22/24 09:01	12/10/24 11:19	7440-42-8	
Calcium	175000	ug/L	200	26.9	1	11/22/24 09:01	12/10/24 11:19	7440-70-2	
Iron	121	ug/L	50.0	9.1	1	11/22/24 09:01	12/10/24 11:19	7439-89-6	
Magnesium	33700	ug/L	50.0	20.1	1	11/22/24 09:01	12/10/24 11:19	7439-95-4	
Manganese	1070	ug/L	5.0	0.39	1	11/22/24 09:01	12/10/24 11:19	7439-96-5	
Potassium	450J	ug/L	500	69.7	1	11/22/24 09:01	12/10/24 11:19	7440-09-7	
Sodium	5690	ug/L	500	115	1	11/22/24 09:01	12/10/24 11:19	7440-23-5	
2320B Alkalinity	Analytical	Method: SM 23	320B						
	Pace Anal	ytical Services	- Kansas Cit	y					
Alkalinity, Total as CaCO3	347	mg/L	20.0	10.5	1		12/02/24 16:57		
2540C Total Dissolved Solids	Analytical	Method: SM 25	540C						
	Pace Anal	ytical Services	- Kansas Cit	y					
Total Dissolved Solids	613	mg/L	13.3	13.3	1		11/27/24 17:56		
300.0 IC Anions 28 Days	Analytical	Method: EPA 3	0.00						
•	Pace Anal	ytical Services	- Kansas Cit	y					
Chloride	14.2	mg/L	1.0	0.53	1		12/14/24 17:32	16887-00-6	
Fluoride	<0.12	mg/L	0.20	0.12	1		12/14/24 17:32	16984-48-8	
Sulfate	37.1	mg/L	10.0	5.5	10		12/14/24 17:46	14808-79-8	

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 916731

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464704001

METHOD BLANK: 3630013

Date: 12/24/2024 08:11 AM

Matrix: Water

Associated Lab Samples: 60464704001

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<6.4	100	6.4	11/27/24 15:29	
Calcium	ug/L	<26.9	200	26.9	11/27/24 15:29	
Iron	ug/L	<9.1	50.0	9.1	11/27/24 15:29	
Magnesium	ug/L	<20.1	50.0	20.1	11/27/24 15:29	
Manganese	ug/L	< 0.39	5.0	0.39	11/27/24 15:29	
Potassium	ug/L	<69.7	500	69.7	11/27/24 15:29	
Sodium	ug/L	<115	500	115	11/27/24 15:29	

LABORATORY CONTROL SAMPLE:	3630019					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	1000	906	91	85-115	
Calcium	ug/L	10000	9760	98	85-115	
Iron	ug/L	10000	10100	101	85-115	
Magnesium	ug/L	10000	9330	93	85-115	
Manganese	ug/L	1000	1010	101	85-115	
Potassium	ug/L	10000	9480	95	85-115	
Sodium	ug/L	10000	9680	97	85-115	

MATRIX SPIKE SAMPLE:	3629944						
		60464294021	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	 ug/L	70.1J	1000	1030	96	70-130	
Calcium	ug/L	120000	10000	133000	134	70-130	M1
Iron	ug/L	5100	10000	15900	108	70-130	
Magnesium	ug/L	25900	10000	36200	103	70-130	
Manganese	ug/L	357	1000	1390	103	70-130	
Potassium	ug/L	4870	10000	14800	100	70-130	
Sodium	ug/L	13800	10000	24200	104	70-130	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	CATE: 3630	020		3630021							
	6	0464667005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	140	1000	1000	1070	1080	93	94	70-130	1	20	
Calcium	ua/l	63600	10000	10000	72800	72700	92	91	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 3630	020		3630021							
		60464667005	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron	ug/L	895	10000	10000	11500	11200	106	103	70-130	3	20	
Magnesium	ug/L	36200	10000	10000	45700	45600	95	93	70-130	0	20	
Manganese	ug/L	31.6	1000	1000	1050	1040	102	101	70-130	1	20	
Potassium	ug/L	21000	10000	10000	30600	31100	96	101	70-130	2	20	
Sodium	ug/L	280000	10000	10000	287000	289000	73	90	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917371

QC Batch Method: EPA 200.7

Analysis Method: EPA 200.7

Analysis Description: 200.7 Metals, Total

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60464699011, 60464699012

METHOD BLANK: 3632816

Date: 12/24/2024 08:11 AM

Matrix: Water

Associated Lab Samples: 60464699011, 60464699012

Parameter	Units	Blank Result	Reporting Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<6.4	100	6.4	12/10/24 11:09	
Calcium	ug/L	<26.9	200	26.9	12/10/24 11:09	
Iron	ug/L	<9.1	50.0	9.1	12/10/24 11:09	
Magnesium	ug/L	<20.1	50.0	20.1	12/10/24 11:09	
Manganese	ug/L	< 0.39	5.0	0.39	12/10/24 11:09	
Potassium	ug/L	<69.7	500	69.7	12/10/24 11:09	
Sodium	ug/L	<115	500	115	12/10/24 11:09	

LABORATORY CONTROL SAMPLE:	3632817	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	972	97	85-115	
Calcium	ug/L	10000	10300	103	85-115	
Iron	ug/L	10000	10200	102	85-115	
Magnesium	ug/L	10000	10200	102	85-115	
Manganese	ug/L	1000	1070	107	85-115	
Potassium	ug/L	10000	10000	100	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX	SPIKE DUP	LICATE: 3632	-		3632819							
Parameter	Units	60464699019 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Boron	ug/L	56.8J	1000	1000	1040	1040	98	99	70-130	0	20	
Calcium	ug/L	115000	10000	10000	129000	127000	148	119	70-130	2	20	M1
Iron	ug/L	6100	10000	10000	16700	16700	106	106	70-130	0	20	
Magnesium	ug/L	27700	10000	10000	38800	37700	111	101	70-130	3	20	
Manganese	ug/L	395	1000	1000	1450	1440	106	105	70-130	1	20	
Potassium	ug/L	3270	10000	10000	13500	13600	103	104	70-130	1	20	
Sodium	ug/L	6960	10000	10000	17300	17200	104	103	70-130	1	20	

MATRIX SPIKE SAMPLE:	3632820						
		60464699018	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Boron	ug/L	55.2J	1000	1050	99	70-130	
Calcium	ug/L	127000	10000	138000	110	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

MATRIX SPIKE SAMPLE:	3632820						
Parameter	Units	60464699018 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Iron	 ug/L	8380	10000	19100	107	70-130	
Magnesium	ug/L	30800	10000	41500	106	70-130	
Manganese	ug/L	714	1000	1790	108	70-130	
Potassium	ug/L	4270	10000	14600	103	70-130	
Sodium	ug/L	7240	10000	17700	105	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917373 Analysis Method: EPA 200.7

QC Batch Method: EPA 200.7 Analysis Description: 200.7 Metals, Total

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004, 60465166005

METHOD BLANK: 3632823 Matrix: Water

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004, 60465166005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Boron	ug/L	<6.4	100	6.4	12/10/24 16:58	
Calcium	ug/L	43.2J	200	26.9	12/10/24 16:58	
Iron	ug/L	18.1J	50.0	9.1	12/10/24 16:58	
Magnesium	ug/L	<20.1	50.0	20.1	12/10/24 16:58	
Manganese	ug/L	< 0.39	5.0	0.39	12/10/24 16:58	
Potassium	ug/L	<69.7	500	69.7	12/10/24 16:58	
Sodium	ug/L	184J	500	115	12/10/24 16:58	

LABORATORY (CONTROL SAMPLE:	3632824
--------------	-----------------	---------

Date: 12/24/2024 08:11 AM

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Boron	ug/L	1000	954	95	85-115	
Calcium	ug/L	10000	10300	103	85-115	
Iron	ug/L	10000	10000	100	85-115	
Magnesium	ug/L	10000	10100	101	85-115	
Manganese	ug/L	1000	1040	104	85-115	
Potassium	ug/L	10000	10100	101	85-115	
Sodium	ug/L	10000	10300	103	85-115	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 3632	825		3632826							
			MS	MSD								
	(60465156001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Boron	ug/L	83.6J	1000	1000	932	881	85	80	70-130	6	20	
Calcium	ug/L	118000	10000	10000	128000	131000	107	132	70-130	2	20	M1
Iron	ug/L	13.6J	10000	10000	8860	8280	88	83	70-130	7	20	M1
Magnesium	ug/L	19900	10000	10000	29200	29100	92	92	70-130	0	20	M1
Manganese	ug/L	331	1000	1000	1240	1180	91	85	70-130	6	20	M1
Potassium	ug/L	5120	10000	10000	14300	13700	92	86	70-130	4	20	
Sodium	ug/L	4000	10000	10000	13000	12500	90	85	70-130	4	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917909 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464704001

METHOD BLANK: 3634992 Matrix: Water

Associated Lab Samples: 60464704001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <10.5 20.0 10.5 11/27/24 15:47

LABORATORY CONTROL SAMPLE: 3634993

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 480 96 90-110

SAMPLE DUPLICATE: 3634994

 Parameter
 Units
 60464293013 Result
 Dup RPD
 Max RPD
 RPD
 Qualifiers

 Alkalinity, Total as CaCO3
 mg/L
 343
 347
 1
 10

SAMPLE DUPLICATE: 3634995

Date: 12/24/2024 08:11 AM

60464699001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 337 339 10 Alkalinity, Total as CaCO3 mg/L 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 918130 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004

METHOD BLANK: 3635810 Matrix: Water
Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004

Blank Reporting

Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <10.5 20.0 10.5 12/02/24 15:36

LABORATORY CONTROL SAMPLE: 3635811

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 481 96 90-110

SAMPLE DUPLICATE: 3635812

60464769008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 301 Alkalinity, Total as CaCO3 mg/L 2 294 10

SAMPLE DUPLICATE: 3635813

Date: 12/24/2024 08:11 AM

60465166003 Dup Max RPD RPD Parameter Units Result Result Qualifiers 428 438 2 10 Alkalinity, Total as CaCO3 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 918131 Analysis Method: SM 2320B
QC Batch Method: SM 2320B Analysis Description: 2320B Alkalinity

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464699011, 60464699012, 60465166005

METHOD BLANK: 3635814 Matrix: Water

Associated Lab Samples: 60464699011, 60464699012, 60465166005

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Alkalinity, Total as CaCO3 mg/L <10.5 20.0 10.5 12/02/24 16:17

LABORATORY CONTROL SAMPLE: 3635815

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Alkalinity, Total as CaCO3 mg/L 500 487 97 90-110

SAMPLE DUPLICATE: 3635816

60464699019 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 306 Alkalinity, Total as CaCO3 mg/L 0 306 10

SAMPLE DUPLICATE: 3635817

Date: 12/24/2024 08:11 AM

60465156001 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 329 Alkalinity, Total as CaCO3 mg/L 347 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 916954 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464704001

METHOD BLANK: 3630622 Matrix: Water

Associated Lab Samples: 60464704001

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 11/19/24 12:16

LABORATORY CONTROL SAMPLE: 3630623

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 1020 102 80-120

SAMPLE DUPLICATE: 3630624

60464559003 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 140 **Total Dissolved Solids** mg/L 140 0 10

SAMPLE DUPLICATE: 3630625

Date: 12/24/2024 08:11 AM

60464294022 Dup Max RPD RPD Parameter Units Result Result Qualifiers 10 Total Dissolved Solids 647 mg/L 664 3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917791 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004, 60465166005

METHOD BLANK: 3634577 Matrix: Water

Associated Lab Samples: 60465166001, 60465166002, 60465166003, 60465166004, 60465166005

Blank Reporting

ParameterUnitsResultLimitMDLAnalyzedQualifiersTotal Dissolved Solidsmg/L<5.0</td>5.05.011/26/24 15:36

LABORATORY CONTROL SAMPLE: 3634578

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Dissolved Solids mg/L 1000 979 98 80-120

SAMPLE DUPLICATE: 3634579

60464925008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers 6220 **Total Dissolved Solids** mg/L 3 6380 10

SAMPLE DUPLICATE: 3634580

Date: 12/24/2024 08:11 AM

60465166003 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 556 mg/L 553 0 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917911 Analysis Method: SM 2540C

QC Batch Method: SM 2540C Analysis Description: 2540C Total Dissolved Solids

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464699011, 60464699012

METHOD BLANK: 3635001 Matrix: Water

Associated Lab Samples: 60464699011, 60464699012

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Total Dissolved Solids mg/L <5.0 5.0 5.0 11/27/24 17:56

LABORATORY CONTROL SAMPLE: 3635002

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units **Total Dissolved Solids** mg/L 1000 992 99 80-120

SAMPLE DUPLICATE: 3635003

Parameter Units Result Result RPD Max Result RPD Qualifiers

Total Dissolved Solids mg/L 494 499 1 10

SAMPLE DUPLICATE: 3635004

Date: 12/24/2024 08:11 AM

60465156001 Dup Max RPD RPD Parameter Units Result Result Qualifiers Total Dissolved Solids 460 452 2 10 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 917888 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0 Analysis Description:

300.0 IC Anions

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60464704001

METHOD BLANK:

Chloride

Fluoride

Sulfate

Matrix: Water

Associated Lab Samples: 60464704001

> Blank Reporting Units Limit MDL Qualifiers Parameter Result Analyzed mg/L < 0.53 1.0 0.53 11/30/24 10:23 mg/L <0.12 0.20 0.12 11/30/24 10:23 mg/L < 0.55 1.0 0.55 11/30/24 10:23

LABORATORY CONTROL SAMPLE: 3634902

LCS Spike LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 95 mg/L 5 4.7 90-110 Fluoride 2.5 2.4 97 mg/L 90-110 Sulfate 5.3 106 90-110 mg/L 5

MATRIX SPIKE SAMPLE: 3634908

Date: 12/24/2024 08:11 AM

Parameter	Units	60464704008 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	<0.53	5	5.3	97	80-120	
Fluoride	mg/L	0.21	2.5	2.9	108	80-120	
Sulfate	mg/L	<0.55	5	5.9	119	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

QC Batch: 918072 QC Batch Method: EPA 300.0 Analysis Method: EPA 300.0

Analysis Description: 300.0 IC Anions

Laboratory:

Pace Analytical Services - Kansas City

Associated Lab Samples: 60465166001

METHOD BLANK: 3635661

Date: 12/24/2024 08:11 AM

Matrix: Water

Associated Lab Samples: 60465166001

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	12/03/24 09:33	
Fluoride	mg/L	<0.12	0.20	0.12	12/03/24 09:33	
Sulfate	mg/L	<0.55	1.0	0.55	12/03/24 09:33	

LABORATORY CONTROL SAMPLE:	3635662					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.6	92	90-110	
Fluoride	mg/L	2.5	2.4	94	90-110	
Sulfate	mg/L	5	5.0	99	90-110	

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 3635	663		3635664							
			MS	MSD								
		60465063007	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	18.0	10	10	26.6	30.2	87	122	80-120	13	15	M1
Fluoride	mg/L	0.43	5	5	6.4	8.6	119	164	80-120	30	15	M1,R1
Sulfate	mg/L	116	10	10	129	132	128	160	80-120	3	15	E,M1

MATRIX SPIKE & MATRIX SP		3635667										
			MS	MSD								
		60465156001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD (Qual
Chloride	mg/L	3.8	5	5	9.3	8.8	111	99	80-120	6	15	
Fluoride	mg/L	0.37	2.5	2.5	3.7	3.3	132	118	80-120	10	15 M	1
Sulfate	mg/L	63.3	50	50	114	110	101	93	80-120	4	15	

SAMPLE DUPLICATE: 3635665						
		60465063007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	18.0	18.1	1	15	
Fluoride	mg/L	0.43	0.43	0	15	
Sulfate	mg/L	116	104	11	15 E	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

15

15

Fluoride

Sulfate

QUALITY CONTROL DATA

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

SAMPLE DUPLICATE: 3635668						
		60465156001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	3.8	3.8		15	

mg/L

mg/L

0.37

63.3

0.38

63.2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

QC Batch: 918345 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60465166003, 60465166004, 60465166005

METHOD BLANK: 3636649 Matrix: Water

Associated Lab Samples: 60465166003, 60465166004, 60465166005

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	12/04/24 01:11	
Fluoride	mg/L	<0.12	0.20	0.12	12/04/24 01:11	
Sulfate	mg/L	< 0.55	1.0	0.55	12/04/24 01:11	

LABORATORY CONTROL SAMPLE:	3636650					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.6	93	90-110	
Fluoride	mg/L	2.5	2.4	98	90-110	
Sulfate	mg/L	5	4.9	99	90-110	

MATRIX SPIKE & MATRIX SP	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3636651											
			MS	MSD								
		60465166003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	5.1	5	5	10.5	10.2	107	100	80-120	3	15	
Fluoride	mg/L	0.30	2.5	2.5	3.6	3.4	132	125	80-120	5	15	M1
Sulfate	mg/L	44.5	25	25	71.6	73.5	108	116	80-120	3	15	

MATRIX SPIKE SAMPLE:	3636654						
		60465266001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	 mg/L	ND	2000	2030	84	80-120	
Fluoride	mg/L	159	1000	1170	101	80-120	
Sulfate	mg/L	4490	2000	6480	100	80-120	

SAMPLE DUPLICATE: 3636653						
		60465166003	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	5.1	5.3	3	15	
Fluoride	mg/L	0.30	0.31	3	15	
Sulfate	mg/L	44.5	44.3	0	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

QC Batch: 918350
QC Batch Method: EPA 300.0

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

EPA 300.0

Associated Lab Samples: 60465166002

METHOD BLANK: 3636670 Matrix: Water

Associated Lab Samples: 60465166002

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	12/04/24 02:38	
Fluoride	mg/L	< 0.12	0.20	0.12	12/04/24 02:38	
Sulfate	mg/L	< 0.55	1.0	0.55	12/04/24 02:38	

Analysis Method:

LABORATORY CONTROL SAMPLE:	3636671					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L		4.7	95	90-110	
Fluoride	mg/L	2.5	2.6	103	90-110	
Sulfate	mg/L	5	5.0	100	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3636672					3636673							
			MS	MSD								
		60464293006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/L	20.2	25	25	41.9	42.1	87	88	80-120	0	15	
Fluoride	mg/L	0.22	2.5	2.5	3.1	3.3	116	123	80-120	5	15	M1
Sulfate	mg/L	97.2	25	25	123	123	103	102	80-120	0	15	E

MATRIX SPIKE SAMPLE:	3636675						
		60464294012	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	1230	250	1390	66	80-120	E,M1
Fluoride	mg/L	0.25	2.5	3.1	114	80-120	
Sulfate	mg/L	141	250	386	98	80-120	

SAMPLE DUPLICATE: 3636674						
		60464293006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	20.2	20.1	1	15	
Fluoride	mg/L	0.22	0.23	5	15	
Sulfate	mg/L	97.2	96.6	1	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(913)599-5665

QUALITY CONTROL DATA

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

QC Batch: 919641 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Kansas City

Associated Lab Samples: 60464699011, 60464699012

METHOD BLANK: 3642615 Matrix: Water

Associated Lab Samples: 60464699011, 60464699012

		Blank	Reporting			
Parameter	Units	Result	Limit	MDL	Analyzed	Qualifiers
Chloride	mg/L	<0.53	1.0	0.53	12/14/24 04:07	
Fluoride	mg/L	< 0.12	0.20	0.12	12/14/24 04:07	CL
Sulfate	mg/L	< 0.55	1.0	0.55	12/14/24 04:07	

LABORATORY CONTROL SAMPLE:	3642616					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	5	4.7	93	90-110	
Fluoride	mg/L	2.5	2.3	92	90-110	CL
Sulfate	mg/L	5	5.2	104	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3642617				3642618								
Parameter	Units	60464769007 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride Fluoride	mg/L mg/L	5.6 <0.12	5 2.5	5 2.5	10.9	9.8 3.1	107 151	85 126	80-120 80-120	11 18	15 15	CL,M1,
Sulfate	mg/L	33.6	50	50	92.1	100	117	133	80-120	8	15	R1 M1

MATRIX SPIKE SAMPLE:	3642620						
Parameter	Units	60464769012 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	12.6	5	16.1	72	80-120	M1
Fluoride	mg/L	<0.12	2.5	3.0	120	80-120	
Sulfate	mg/L	19.7	50	72.0	105	80-120	

SAMPLE DUPLICATE: 3642619						
		60464769007	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Chloride	mg/L	5.6	5.6	0	15	
Fluoride	mg/L	<0.12	<0.12		15 C	:L
Sulfate	mg/L	33.6	31.7	6	15	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 12/24/2024 08:11 AM

- B Analyte was detected in the associated method blank.
- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: AMEREN SCPD (EVENT 1)

Pace Project No.: 60465166

Date: 12/24/2024 08:11 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60464704001	S-UG-2	EPA 200.7	916731	EPA 200.7	916791
60464699011	S-BMW-1S	EPA 200.7	917371	EPA 200.7	917460
60464699012	S-BMW-3S	EPA 200.7	917371	EPA 200.7	917460
60465166001	S-TMW-4	EPA 200.7	917373	EPA 200.7	917466
60465166002	S-TMW-5	EPA 200.7	917373	EPA 200.7	917466
60465166003	S-TMW-6	EPA 200.7	917373	EPA 200.7	917466
60465166004	S-SCPD-DUP-1	EPA 200.7	917373	EPA 200.7	917466
60465166005	S-SCPD-FB-1	EPA 200.7	917373	EPA 200.7	917466
60464704001	S-UG-2	SM 2320B	917909		
60464699011	S-BMW-1S	SM 2320B	918131		
60464699012	S-BMW-3S	SM 2320B	918131		
60465166001	S-TMW-4	SM 2320B	918130		
60465166002	S-TMW-5	SM 2320B	918130		
60465166003	S-TMW-6	SM 2320B	918130		
60465166004	S-SCPD-DUP-1	SM 2320B	918130		
60465166005	S-SCPD-FB-1	SM 2320B	918131		
60464704001	S-UG-2	SM 2540C	916954		
60464699011	S-BMW-1S	SM 2540C	917911		
60464699012	S-BMW-3S	SM 2540C	917911		
60465166001	S-TMW-4	SM 2540C	917791		
60465166002	S-TMW-5	SM 2540C	917791		
60465166003	S-TMW-6	SM 2540C	917791		
60465166004	S-SCPD-DUP-1	SM 2540C	917791		
60465166005	S-SCPD-FB-1	SM 2540C	917791		
60464704001	S-UG-2	EPA 300.0	917888		
60464699011	S-BMW-1S	EPA 300.0	919641		
60464699012	S-BMW-3S	EPA 300.0	919641		
60465166001	S-TMW-4	EPA 300.0	918072		
60465166002	S-TMW-5	EPA 300.0	918350		
60465166003	S-TMW-6	EPA 300.0	918345		
60465166004	S-SCPD-DUP-1	EPA 300.0	918345		
60465166005	S-SCPD-FB-1	EPA 300.0	918345		

WO#:60465166

DC#_IItle: EN	V-FRM-LENE-0009_Sample Co	60465166
Revision: 2	Effective Date: 01/12/2022	Issued By: Lenexa

Client Name: Rollsmith Gerang	
Courier: FedEx □ UPS □ VIA □ Clay □ PEX □ ECI □	Pace ☐ Xroads Client ☐ Other ☐
Tracking #: Pace Shipping Label Use	ed? Yes 🗆 No
Custody Seal on Cooler/Box Present: Yes ✓ No □ Seals intact: Yes	⊿ No □
Packing Material: Bubble Wrap □ Bubble Bags □ Foam □	None □ Other □
Thermometer Used: 7198 Type of Ice: We Blue No	
Cooler Temperature (°C): As-read 0.4/2.4 Corr. Factor Correct	ted 0.3/2:3 Date and initials of person examining contents:
Temperature should be above freezing to 6°C 2.9//18	2.8/1.7 /1/21/24
Chain of Custody present: ✓ Yes □No □N/A	
Chain of Custody relinquished: ✓ Yes □No □N/A	
Samples arrived within holding time: ☐Yes ☐No ☐N/A	
Short Hold Time analyses (<72hr):	
Rush Turn Around Time requested:	
Sufficient volume: Yes No N/A	
Correct containers used: ☐Yes ☐No ☐N/A	
Pace containers used:	
Containers intact:	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	
Filtered volume received for dissolved tests?	
Sample labels match COC: Date / time / ID / analyses	
Samples contain multiple phases? Matrix: WT □Yes ØNo □N/A	
Containers requiring pH preservation in compliance? (HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	List sample IDs, volumes, lot #'s of preservative and the date/time added.
Cyanide water sample checks:	
Lead acetate strip turns dark? (Record only) □Yes □No Potassium iodide test strip turns blue/purple? (Preserve) □Yes □No	
Trip Blank present:	
Headspace in VOA vials (>6mm): □Yes □No ☑N/A	
Samples from USDA Regulated Area: State:	
Additional labels attached to 5035A / TX1005 vials in the field?	
Client Notification/ Resolution: Copy COC to Client? Y N Person Contacted: Date/Time: Comments/ Resolution:	Field Data Required? Y / N
Project Manager Review: Date	

12-3/2-8/1-7 Preservation non-conformatice identified for samble, Collected@S-IMV-16 *Container Size; (1) 1L, (2) S00mL, (3) 250mL, (4 25mL, (5) 100mL, (6) 40mL via', (7) EnCore, (8) aHSO4, (8) Sod Thiosulfate, (9) Ascorbic Acid, ENV-FRM-CORQ-0019 v02 110123 @ [] Other ered by: [] In Person [] Courier Sample Comment Prelog / Bottle Ord ID: **EZ 3165160** erraCore, (9) 90mL (10) Other]FedEX [JUPS cctNum / Client ID: oŧ Jamie Church LAB USE ONLY- Affix Workorder/Login Label Here 15856 Table #: Obs. Temp. I'd Page: Customer Remarks / Special Conditions / Possible Hazards: identify Container Preservative Type*** Specify Container Size ** Washing a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace* Terms and Conditions found at https://www.pacelabs.com/resource-library/resour 3 50 App III and CalvAn Metals (200 7)* 1 Results Units Res. Chlorine P), Sail/Saild (SS), Oil (OL), Wipe (WP), Tissue (TS), Blos CHAIN-OF-CUSTODY Analytical Request Document Rasmo Ston Cont. (8) d 4 6 # 6 68 11/20/24 0900 11-19-24 10959 1107 Collected or Composite End 107 11-19-24 0908 11/20/24 1143 11-19-24 1001 eived by/Company: (Signature) eceived by/Company: (Signature) mark haddock@rocksmithgeo.com Time 11-19-24 1107 ield Filtered (if applicable): mark haddock@rocksmithgeo com WSID # or WW 1-19-34 Mobile Date Yes. Analysis: Mark Haddock Mark Haddock 314-974-6578 Printed Name county / State origin of sample(s): Collected By: S. Brat. L. C. | Other Matrix Codes Insert in Matrix box below]! Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product Time 1530 (B), Vapor (V), Surface Warer (SW), Seelment (SED), Sludge (SL), Caule (CK), Leachate (LL), Biosolia (BS), Orner (OT []Same Day []i Day []2 Day []3 Day []Other Composite Start Rush (Pre-approval required): Contact/Report To: urchase Order # (if Regulatory Program (DW, RCRA, etc.) as applicable ivoice E-Mail Date applicacle): Ce E-Mail; voice To: Wholey Wholey Phone #: Quote #: E-Mall ate/Time: Matrix Grab 00 0 (1) P 6 0 0 0 2320 Creve Coeur Mill Road, Maryland Heights, MO 3 Ш 73 \leq \leq $\stackrel{>}{\sim}$ N $\stackrel{\wedge}{\vdash} \mathbb{A}$ M $\stackrel{\textstyle >}{\sim}$ * - App III and Cat/An Metals* - EPA 200.7: B, Ca, Fe, Mg, Mn, K, Na Pace® Location Requested (City/State) Date Results Requested: 9608 Loiret Blvd , Lenexa, KS 66219 Rocksmith Geoengineering, LLC Z AMEREN SCPD (Event 1) Customer Sample ID Pace Analytical Kansas 5te Collection Info/Facility ID (as applicable []Levelin []Levelin []Levelin dditional Instructions from Pace"; 5-BMW-15 5-BAW-35 COC# 12 63043 Rocks mit me Zone Collected: S-SCPD-MSD-1 S-SCPD-DUP-1 S-SCPD-MS-1 Pace S-SCPD-FB-1 moany Name S-TMW-6 reet Andress: S-TMW-5 S-TMW-4 roper Name: [] EQUIS Page 33 of

rol beilitinebi eanamrolnoa-non noitavresert Akhmes ••• Preservative Types: (1) None, (2) HNO3, (3)
h2SO4, (4) HCi, (5) NaOH, (6) Zn Acetate, (7)
NaHSO4, (8) Sod Thiosurfate, (9) Ascorbic Acid, (10) **Container Size: [1] 11, (2) \$00mt, (3) 250mt, (4) 225mt, [5] 100mt, (6) 40mt vial, (7) EnCore, (8) erraCore, (9) 90mt, (10) Other |]FedEX []UPS []Other Delivered by: [] In- Person [] Courier Sample Comment Prelog / Bottle Ord 1D: **EZ 3165160** AcctNum / Client (D): rofile / Template: oŧ Jamie Church LAB USE ONLY- Affix Workorder/Login Label Here ЛеОн, (11) Other Proj. Mgr.: 15856 Table #: Obs. Temp. (°C) bay 5/66 Page: Scan QR Code for instructions Correction Factor ("C) Customer Remarks / Special Conditions / Possible Hazards Identify Container Preservative Type *** Specify Container Size ** 3 76 App III and Cal/An Metals (2007)* TDS / Alkalinity Other Strike box below): Drinking Water (DW), Ground Water (GW), Waste Water (WW), Product (P), Soil/Soild (SS), Oil (OL), Wipe (WP), Tissue (TS), Bioassay Results Units Res, Chlorine CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields Cont. Field Filtered (if applicable): [] Yes 6 # Collected By: Gm. + Marty (Printed Name) Collected or Composite End 4 teceived by/Company: (Signature) mark haddock@rocksmithgeo.com Time eceived by/Company: (Signature) mark haddock@rocksmithgeo.com PC-11-11 Date Yes Analysis: Mark Haddock 314-974-6578 Mark Haddock Reportable County / State origin of sample(s): Signature: Time 3), Vaoor (V), Surface Water (SW),Sediment (SED), Sludge (SL), Caulk (CK), Leachate (LL), Biosolid (BS), Other (OT) 37/11-14-34/148 Composite Start []Same Day []1 Day []2 Day []3 Day [] Other Purchase Order # (If applicable): Rush (Pre-approval required) ontact/Report To: Regulatory Program (DW, RCRA, etc.) as applicable: nvoice E-Mail: Date voice To: Cc E-Mail: hone #: Quote #: -Vail: Sate/Time: Matrix * Comp / Grab 0 2320 Creve Coeur Mill Road, Maryland Heights, MO 13 \leq \leq \leq \leq \mathbb{Z} \leq 3 - App III and Cat/An Metals* - EPA 200.7: B, Ca, Fe, Mg, Min, K, Na Pace "Location Requested (City/State) Date Results Requested: Rollen In 9608 Loiret Blvd., Lenexa, KS 66219 Rocksmith Geoengineering, LLC, Ξ AMEREN SCPD (Event 1) Customer Sample ID Site Collection Info/Facility ID (as applicable) Pace Analytical Kansas [] Levelii [] Levelii [] Leveliiv AK ned by/Company: (Signature COC# 12 63043 me Zone Collected: S-SCPD-MSD-1 5-06-3 S-SCPD-DUP-: S-SCPD-MS-1 Pace S-SCPD-FB-1 Istomer Project #: Cata Deliverables: ombany Name S-TMW-6 treet Address: S-TMW-5 roject Name: S-TMW-4 [] EQUIS

Submitting a sample via this chain of custody constitutes acknowledgment and acceptance of the Pace® Terms and Conditions found at https://www.pacelabs.com/resource-library/resource/pace-terms-and-conditions/

ENV-FRM-CORQ-0019_v02_110123 ©

Pace® Analytical Services, LLC

Qualtrax ID: 30422

SPLC WPPU BP3Z															Misc.	Wipe/Swab	120mL Coliform Na Thiosulfate	Ziploc Bag	Air Filter	Air Casselles	lerracore Nit	Sulfillia Call			Matrix	Matos	Water	DIOC CON	Non-aductors Endura	UIL	Wipe Desired Motor	Drinking Water			
BP38	-					-	1				1						SP5T	ZPLC				1				TANT		NA.	١,	JOE MAN	AN S	A			
BP3F	+					t	+	1	1		H				F	=	S	7	4	מוכי	Σ :	7	T	+	T	1	1	0 2	2 0) 5	> 0	7	1		1
BP3N	×		4	_	-	-	#		1	t				7												1	TIITEFEC								
NIGE	-				-	1	1		1	t	\dagger								ic	0)			္ -	plastic	setate		- Tield		plastic	2	cetate	plastic	0	i,	plstic
	77/2					1	1		+	t	1				ي	tic	tic	stic	1L unpreserved plastic	Acetate	plastic	500mL HNO3 plastic 500ml H2SO4 plastic	4 plast	served	500mL NaOH, Zn Acetate	250mL NaOH plastic 250ml HNO3 plastic - field filtered	plastic	plastic	served	4 plast	Zn A	served	plastic	4 plast	16oz unpresserved pistic
BP2U	P11/12/12					1	1		1		1				Plastic	H plas	3 plas	O4 pla	eserve	H. Zn	NAOH	HNO3	HZSO	unpre	NaOH	NaOH	HNO3	HN03	unpre	HZSO	NaOH	unpre	HNO3	H2SO	npress
Urqa	1	,	4	-			1	T	-	1			П		OAN	1L NAOH plastic	1L HNO3 plastic	1L H2SO4 plastic	L unpr	1L NaOH, Zn Acetate	500mL NAOH plastic	200m	200mL	SuumL unpreserved plastic	200mL	250mL NaOH plastic	250mL	250mL HNO3 plastic	250mL unpreserved plastic	250ml H2SO4 plastic	250mL NaOH, Zn Acetate	125mL unpreserved plastic	125mL HNO3 plastic	125mL H2SO4 plastic	16oz u
Mebn							1	1	1	0				Ť																7					
Mekn							1	1	1							BP1B	BP1N	BP1S	BP10	BP1Z	BP2B	BP2N	BP2S	BP2U	BP2Z	BP3B	BP3F	BP3N	BP3U	BP3S	BP3Z	BP4U	BP4N	BP4S	WPDU
1GFU					T	1	1	1	1	1	#					٢		<u>.</u>	ш.																
NGÐ∀					1	1	1	1	1	1	1								e Ge				1L Na Thiosulfate clear/amber glass			S	S	S	S	S	S				
N₽9∀		Ī				1	1	1	6	1									iber wi	amber glass		ass	ear/arr	glass	rglass	amber glass	amber glass	amber glass	amber glass	amber glass	amber glass				
SE59A	4					1		1	F		5					, rei	2 2	ar	ved arr		r glass	nber gl	lfate cl	amper	3 ambe			s amp	s amp	s amp	s amp				
US⊝A					1	1		1	Ì	1		Ī				Roz clear soil ia	ar soil	2oz clear soil jar	4oz unpreserved amber wide	100mL unores	1L HCl amber glass	304 an	Thiosu	npres	500mL HNO3 amber glass	H2SC	. H2SC	. unpre	unpre-	nubre.	unpre				
UreA					Ì	1	İ	1	Ì	Ī	Ħ					Soz cla	4oz clear soil la	202 cle	4oz un	100mL	1L HCI	1L H2SO4 amber glass	1L Na	1liter unpres amber glass	500mL	500mL H2SO4	250mL H2SO4	500mL unpres	250mL unpres	125mL unpres	100mL unpres				
н≀ә∀					İ	1	1			1	Ħ								Ì																
BG1U						1	1		Ï		1				9	MICKI	WGFU	WG2U	JGFU	AGOU	AG1H	AG1S	AG1T	AG10	AG2N	AG2S	AG3S	AG2U	AG3U	AG4U	AGSU				
B690					Ī	1	1				1				96	5									F	1									
DC9M					1											١									ial				s						
DG90																Toin.	Na Vial	/ial	<u>_</u>	er vial	er vial	served		ır vial	40mL unpreserved clear vial	glass		glass	250ml. Unpres Clear glass						
UG9V																000	40ml HCl amber voa via	40ml MeOH clear via	40mL TSP amber vial	40mL H2SO4 amber vial	40mL Na Thio amber vial	40mL amber unpreserved	40mL HCI clear vial	40mL Na Thio. clear vial	served	1liter H2SO4 clear glass	glass	250mL HCL Clear glass	es Cle	il iar					
DG90							1									Jen Jen	HC Sulla	MeOH	TSP at	H2SO	Na Thi	amber	된 당 당	Na Thi	unpres	12504	1liter unpres glass	HCL	Unbr	16oz clear soil jar					
DG9H			Į.													1	40ml	40ml	40mL	40ml	40mL	40mL	40mL	40mL	40mL	1liter	1liter L	250m	250ml	160Z					
H69∧					T		1																				-			=					
ПОЭЛ		-	-	+	-	>	-†	1	T		1		T		Container Codes	19	DCSB DCSB DCSB DCSB DCSB DCSB DCSB DCSB	Mega	0690	DG9S	DG9T	DG9D	VG9H	VG9T	VG9U	BG1S	BG1U	BG3H	BG3U	WGDL	1	1			

DC#_Title: ENV-FRM-LENE-0001 v07_Sample Container Count Effective Date: 7/12/2024

To: Project File

Project Number: 23009-24

Rocksmith Geoengineering, LLC

CC: Mark Haddock, Jeffrey Ingram

From: Grant Morey Email: grant.morey@rocksmithgeo.com

RE: Data Validation Summary, Sioux Energy Center – SCPD – Data Package 60465166

The following is a summary of instances where quality control criteria in the functional guidelines were not met and data qualification was required:

- When a compound was detected in a blank (i.e. method, field), and the blank comparison criterion was not met, associated sample results were qualified as estimates (J) or non-detects (U).
- When a duplicate criterion was not met, the associated sample result was qualified as an estimate (J for detects, UJ for non-detects).
- When a compound was detected in a sample result between the Method Detection Limit (MDL) and Practical Quantification Limit (PQL), the results were recorded at the detection value and qualified as estimates (J).
- When a matrix spike/matrix spike duplicate (MS/MSD) criterion was not met, the associated sample result was qualified as an estimate (J, J+ for estimates based high, and J- for estimates based low).

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Compa	ny Name: Rocksmith Geoengineering		Proje	ect Manag	er: J. Ingram					
	Name: Ameren SCPD				r: 23009-24					
Review	er: G. Morey	Validation Date: 01/23/2025								
Labora	tory: Pace Analytical		SDG	3 #: 604651	66					
Analytic	cal Method (type and no.): EPA 200.7 (Total Metals); SI	— И 2320В								
Matrix:	☐ Air ☐ Soil/Sed. ■ Water ☐ Waste									
Sample	Names S-TMW-4, S-TMW-5, S-TMW-6, S-SCPD-DUP-1,	S-SCPD	-FB-1, S-U	JG-2, S-BMV	V-1S, S-BMW-3S					
NOTE:	Please provide calculation in Comment areas or	on the	back (if	on the bac	ck please indicate in comment areas).					
Field Ir	nformation	YES	NO	NA	COMMENTS					
a)	Sampling dates noted?	X			11/14/24-11/20/24					
b)	Sampling team indicated?	X			GTM/JTR/JDQ					
c)	Sample location noted?	X								
d)	Sample depth indicated (Soils)?			x						
e)	Sample type indicated (grab/composite)?	X			Grab					
f)	Field QC noted?	X			See Notes					
g)	Field parameters collected (note types)?	×			pH, Spec Cond, Turb, Temp, DO, ORP					
h)	Field Calibration within control limits?	×	$\overline{\Box}$	$\overline{\Box}$						
i)	Notations of unacceptable field conditions/performa		om field lo	_	notes?					
.,	retations of anaccoptable field containens, performa		×							
j)	Does the laboratory narrative indicate deficiencies?			x	No lab narrative.					
J/	Note Deficiencies:		Ш	Ш						
	Note Benderides.									
Chain-	of-Custody (COC)	YES	NO	NA	COMMENTS					
a)	Was the COC properly completed?	х								
b)	Was the COC signed by both field									
ŕ	and laboratory personnel?	X								
c)	Were samples received in good condition?	х								
Genera	ıl (reference QAPP or Method)	YES	NO	NA	COMMENTS					
		_	_	_						
a)	Were hold times met for sample pretreatment?	×								
b)	Were hold times met for sample analysis?	х								
c)	Were the correct preservatives used?	Х								
d)	Was the correct method used?	Х								
e)	Were appropriate reporting limits achieved?	X								
f)	Were any sample dilutions noted?	Х			See Notes					
a)	Were any matrix problems noted?		х							

QA LEVEL II - INORGANIC DATA EVALUATION CHECKLIST

Blanks	S	YES	NO	NA	COMMENTS
a)	Were analytes detected in the method blank(s)?	X			See Notes
b)	Were analytes detected in the field blank(s)?	X			See Notes
c)	Were analytes detected in the equipment blank(s)?			x	
d)	Were analytes detected in the trip blank(s)?			X	
Labora	atory Control Sample (LCS)	YES	NO	NA	COMMENTS
a)	Was a LCS analyzed once per SDG?	Х			
b)	Were the proper analytes included in the LCS?	X			
c)	Was the LCS accuracy criteria met?	X			
Duplic	ates	YES	NO	NA	COMMENTS
a)	Were field duplicates collected (note original and du	uplicate	e sample r	names)?	S-SCPD-DUP-1 @ S-TMW-4
,	(g	×		П	See Notes
b)	Were field dup. precision criteria met (note RPD)?	$\overline{\Box}$	×		See Notes
c)	Were lab duplicates analyzed (note original and du	olicate	_	_	
,	, , , , ,	×			See Notes
d)	Were lab dup. precision criteria met (note RPD)?		×		
Blind S	Standards	YES	NO	NA	COMMENTS
a)	Was a blind standard used (indicate name,			х	
	analytes included and concentrations)?				
b)	Was the %D within control limits?			х	
Matrix	Spike/Matrix Spike Duplicate (MS/MSD)	YES	NO	NA _	COMMENTS
a)	Was MS accuracy criteria met?		X		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
b)	Was MSD accuracy criteria met?		X		See Notes
	Recovery could not be calculated since sample contained high concentration of analyte?			х	
c)	Were MS/MSD precision criteria met?		x		See Notes
Comm	ents/Notes:				
Gene	eral:				
Sulfa	te and chloride diluted in some samples, no qualifi	cation	necessar	y.	

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Comments/Notes:

Method Blanks:
3632823: calcium (43.2J), iron (18.1J), and sodium (184J). Associated with samples -6001 through -6005.
Calcium at -005 <rl, -001="" -003="" <="" as="" at="" iron="" non-detect="" qualified="" rl,="" rl.="" rl.<="" td="" to=""></rl,>
results qualified as non detect. Sodium at -005 < RL, qualified as non-detect at RL. Other sample results > 10x blank or non-
detect, no qualification necessary.
Field Blanks:
S-SCPD-FB-1 @ S-TMW-5: calcium (32.8J), sodium (163J), and fluoride (0.22). Fluoride < 10x blank and > RL, result qualified
as estimate. Other analytes > 10x blank, no qualification necessary.
Duplicates:
Field Duplicate: S-SCPD-DUP-1 @ S-TMW-4: iron (23.7J), detected in parent sample below RL, not detected in duplicate.
results qualified as estimates.
Lab duplicate Max RPD: 10%: Alkalinity, TDS; 15%: Chloride, Fluoride, Sulfate
MS/MSD:
3629944: MS recovery high for calcium. Associated with unrelated sample, no qualification necessary.
3632818/3632819: MS recovery high for calcium, MSD recovery and RPD within control. Associated with unrelated sample,
no qualification necessary.
3632825/3632826: MSD recovery high for calcium, MS recovery and RPD within control. Associated with unrelated sample,
no qualification necessary.
$3635663/3635664: MSD\ recovery\ high\ for\ chloride,\ MS\ recovery\ and\ RPD\ within\ control.\ MSD\ recovery\ and\ RPD\ outside\ control\ for\ fluoride$
$MS\ recovery\ within\ control.\ MS/MSD\ recovery\ high\ for\ sulfate,\ RPD\ within\ control.\ Associated\ with\ unrelated\ sample,\ no\ qualification\ necessary.$
$3635666/3635667: MS\ recovery\ high\ for\ fluoride,\ MSD\ and\ RPD\ within\ control.\ Associated\ with\ unrelated\ sample,\ no\ qualification\ necessary.$
3636651/6366652: MS/MSD recovery high for fluoride, RPD within control. Associated with -003, result qualified as estimate.
3636675: MS recovery low for chloride. Associated with unrelated sample, no qualification necessary.
3642617/3642618: MS/MSD recovery high for fluoride, RPD outside control. MSD recovery high for sulfate, MS recovery and RPD within control.
Associated with unrelated sample, no qualification necessary.
3642620: MS recovery low for chloride. Associated with unrelated sample, no qualification necessary.
3636672/3636673: MSD recovery high for fluoride, MS and RPD within no control limits. No qualification necessary.

QA LEVEL IV - INORGANIC DATA EVALUATION CHECKLIST

Data Qualification:

Sample Name	Constituent(s)	Result	Qualifier	Reason
S-TMW-4	Iron	50.0	U	Detected in blank, result < RL
S-TMW-5	"	50.0	U	"
S-TMW-6	"	50.0	U	"
S-SCPD-FB-1	Sodium	500	U	"
S-TMW-5	Fluoride	0.40	J	Detected in field blank, result < 10x blank
S-SCPD-DUP-1	Iron	9.1	UJ	Detected in parent sample, not detected in duplicate
S-TMW-4	Iron	23.7	J	"
S-TMW-6	Fluoride	0.30	J+	MS/MSD recoveries high, RPD OK
S-SCPD-FB-1	Calcium	200	U	Detected in blank, result < RL

Signature:	Grant More	y	Date: 01/23/2025	

January 31, 2025 Rocksmith Geoengineering Project Number: 23009-24

Appendix B
Alternative Source Demonstration – **November 2023 Sampling Event**

REPORT

SCPD - Alternative Source Demonstration

Sioux Energy Center, St. Charles County, Missouri, USA

June 24, 2024

Project Number: 23009-24

Submitted to:

Ameren Missouri 1901 Chouteau Ave St. Louis, MO 63103 Submitted by:

Rocksmith Geoengineering, LLC 2320 Creve Coeur Mill Rd Maryland Heights, MO 63043

Table of Contents

1.0	Certification Statement	. 1
2.0	Introduction	. 2
3.0	Site Description and Background	. 2
3.1	Geological and Hydrogeological Setting	. 2
3.2	Utility Waste Landfill – SCPD	. 2
3.3	CCR Rule Groundwater Monitoring	. 3
4.0	Review of the Statistically Significant Increases	. 3
5.0	Evidence of SSI's from Alternative Source	. 4
5.1	CCR Indicators	. 4
5.2	Evaluation of the Statistically Significant Boron Exceedance at UG-2	. 5
5.3	Evaluation of the Statistically Significant Increase of Sulfate at TMW-5	. 8
5.	.3.1 Geochemical Signatures	. 8
6.0	Demonstration that SSI was not caused by SCPD Impacts	. 9
7.0	References	. 9

TABLES

- Table 1: November 2023 Detection Monitoring Results
- Table 2: Review of Statistically Significant Increase (Embedded in Text)
- Table 3: Types of CCR and Typical Indicator Parameters (Embedded in Text)
- Table 4: Summary of Mississippi and Missouri River Elevations (Embedded in Text)

FIGURES

- Figure 1: Sioux Energy Center Groundwater Monitoring Programs and Sample Location Map
- Figure 2: Timeseries Plot of Boron Concentrations at UG-2
- Figure 3: Calculated Mississippi and Missouri River Elevations at the SEC
- Figure 4: Difference in Feet Between Mississippi and Missouri River Elevations at the SEC
- Figure 5: Timeseries Plot of Sulfate Concentrations at Downgradient SCPD Wells
- Figure 6: Timeseries Plot of Sulfate Concentrations at TMW-5 and Background Wells
- Figure 7: Pre-CCR Placement Sulfate Concentration State UWL Downgradient Monitoring Wells
- Figure 8: TMW-5 and SCPD Leachate Piper Diagram

i

1.0 CERTIFICATION STATEMENT

This SCPD – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule) under the direction of a licensed professional engineer with Rocksmith Geoengineering, LLC.

I hereby certify that this SCPD – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA located at 8501 Missouri 94, West Alton, Missouri 63386 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

Rocksmith Geoengineering, LLC.,

Mark Haddock, P.E., R.G.

Principal Engineer, Senior Partner

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this SCPD – Alternative Source Demonstration has been prepared to document an Alternative Source Demonstration (ASD) for two Statistically Significant Increase (SSIs) identified for Ameren Missouri's (Ameren's) Sioux Energy Center (SEC), Utility Waste Landfill (UWL) SCPD Cell 2. This document satisfies the requirements of §257.94(e)(2), which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSIs were the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

Ameren owns and operates the SEC in St. Charles County, Missouri located approximately 12 miles west-northwest of the confluence of the Mississippi and Missouri Rivers. **Figure 1** depicts the site location and layout, including the location of SCPD. The SEC is approximately 1,025 acres and is located in the floodplain between the Mississippi and Missouri Rivers. The SEC is bounded to the north by wooded areas associated with the Mississippi River; to the south by a railroad; and to the east and west by agricultural fields.

3.1 Geological and Hydrogeological Setting

Hydrogeologically, the SCPD lies between the Mississippi River to the north and the Missouri River to the south. Flow and deposition from these rivers have resulted in thick alluvial deposits that lie unconformably on top of bedrock. These alluvial deposits range from approximately 100 to 130 feet in thickness and comprise the uppermost aquifer, called the alluvial aquifer. Overall, this aquifer is described as a fining upwards sequence of stratified sands and gravels with varying amounts of silt and clay. Drilling in the alluvial aquifer identified different sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region includes Mississippian-aged rocks of the Meramecian Series. Formations include primarily limestone, dolomite, and shale and are comprised of the Salem Formation overlying the Warsaw Formation and the Burlington-Keokuk Formation.

3.2 Utility Waste Landfill - SCPD

UWL Cell 2 is referred to by Ameren as the SCPD, or "Gypsum Pond" Cell 2. The SCPD is approximately 36 acres in size and is located south of the generating plant on the south side of Highway 94 (Figure 1). The CCR Unit, which began operation on December 14, 2022, manages CCR from the SEC Wet Flue-Gas Desulfurization System (WFGD).

The WFGD process occurs after the removal of slag and fly ash. A crushed limestone (CaCO3) mix is introduced into the boiler flue gas flow. The limestone reacts with sulfur dioxide (SO2) in the flue gas and produces 'synthetic' gypsum (calcium sulfate dihydrate (CaSO4 * 2H2O)). The resultant gypsum material was formerly wet sluiced from the plant across the highway to the SCPC, and has been wet sluiced to SCPD since December 14, 2022. Once there, the gypsum is dewatered by gravity, with the sluice conveying recycled water back to the WFGD for reuse. The primary soluble constituents of the gypsum CCR are sulfate, calcium, chloride, and sodium (Gredell and Reitz & Jens, 2014).

The SCPD cell is bounded immediately on the west by the SCPC surface Impoundment (UWL Cell 1), northeast by the SCL4A (UWL Cell 4a) landfill cell, the north by the UWL recycle pond, and south/southeast by low lying agricultural floodplain. The perimeter berm surrounding the SCPD is constructed to an elevation of 446 feet above mean sea level (MSL), which is approximately 5 feet above 100-year flood elevation of 441.2 feet MSL and about 12 to 18 feet above the surrounding low-lying farmland. This berm elevation is equivalent to the adjacent SCPC, SCL4A, and Recycle Pond areas. Additionally, the SCPD is lined with a bottom composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil flexible high-density polyethylene (HDPE) geomembrane liner. This liner system has a base elevation (top of liner/base of CCR) of approximately 432 feet MSL at its lowest point.

A groundwater monitoring well network was installed in 2007 and 2008 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and

consists of 16 monitoring wells ringing the current and proposed future extents of the UWL (Figure 1). These monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for groundwater. Quarterly groundwater samples have been collected in these monitoring wells since June 2008 for the Missouri UWL parameters. Placement of WFGD materials in the SCPD started on December 14, 2022.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, prior to the initial receipt of CCR on December 14, 2022 the following were completed: (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and (4) eight baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the SCPD consists of six monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. One monitoring well (UG-2) was installed by Gredell Engineering Resources, Inc. (Gredell) in December 2007 as a part of the Missouri UWL state monitoring program. This monitoring well is used in both the SCPC and SCPD groundwater monitoring well networks. The background monitoring wells (BMW-1S and BMW-3S) were installed by Golder Associates Inc. (Golder) in 2016 for CCR Rule groundwater monitoring purposes. Three monitoring wells (TMW-4, TMW-5, and TMW-6) were installed in March 2022 to the south and southeast of the SCPD by WSP USA, Inc. (WSP) specifically for CCR groundwater monitoring of the SCPD. More information on the design and installation of the monitoring wells is provided in the SCPD GMP (WSP, 2022) and the SCPD 2022 Annual Report (WSP, 2023).

Between May 2016 and June 2017, eight baseline sampling events were completed for the existing monitoring wells used to monitor the SCPD (UG-2, BMW-1S, and BMW-3S). Eight baseline sampling events were also completed between March and October of 2022 for TMW-4, TMW-5, and TMW-6. After baseline sampling, the first Detection Monitoring event was completed in May 2023. The following Appendix III constituents were analyzed during Detection Monitoring:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2023, background results from the eight baseline sampling events were used to calculate statistical upper prediction limits (UPLs) for wells TMW-1, TMW-2, and TMW-3. Since monitoring well UG-2 is included in both the SCPC and SCPD monitoring networks, statistical limits for this well follow those used for SCPC monitoring, which were updated in March 2024 (Rocksmith, 2024). These UPLs were then compared to the Detection Monitoring results from the May 2023 sampling event and subsequent sampling events. If a result from the Detection Monitoring event is higher than the calculated UPL, it is classified as an initial exceedance, and a verification sample is then collected and tested in accordance with the SCPD Statistical Analysis Plan (SAP). In November 2023, two initial exceedances were identified: boron at UG-2 and sulfate at TMW-5. Verification sampling in February 2024 confirmed both initial exceedances as SSIs. Results from this sampling event are provided in **Table 1**.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

Monitoring wells UG-2 and TMW-5 are screened in the upper portion of the alluvial aquifer, just below the average seasonal low elevation for groundwater. As shown in **Figure 1**, UG-2 is located north of the SCPD, which is south of the generating plant, highway 94, and the two surface impoundments near the plant (SCPA and SCPB), and north of Dwiggins Road. TMW-5 is located immediately south of the SCPD.

Based on Rocksmith's review of the pre-disposal data (discussed in Section 3.2 above), as well as our comparison of the pre-disposal data with the results from the eight CCR-rule baseline events, it was concluded that the groundwater in some areas around the SCPD contains low-level pre-existing impacts from CCR that pre-date SCPD construction and operation. As a result of these pre-existing impacts, the SCPD statistical analysis plan uses intrawell upper prediction limits (UPLs) to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program. A summary table of the November 2023 SSIs is provided in **Table 2**.

Table 2: Review of Statistically Significant Increases

Constituent	Well ID	Current UPL	Range of Values Prior to November 2023 Sampling Event (CCR Rule and State UWL Sampling)	November 2023 Result	February 2024 Result
Boron (μg/L)	(μg/L) UG-2 277		ND (<100) – 322 (with outliers between 491 - 2,180)	1,700	1,360
Sulfate (mg/L)	TMW-5	46.12	34.9 – 42.0	50.0 J	72.8

Notes:

- 1) mg/L milligrams per liter.
- 2) μg/L micrograms per liter.
- 3) UPL Upper Prediction Limit. UPLs calculated using Sanitas™ software.
- ND Non-Detect.
- 5) J Result is an estimated value.
- 6) Several outliers were identified at UG-2 prior to calculating the UPL for UG-2. These include eight high results collected between May 2013 and February 2015 inferred to be associated with the construction of the SCL4A. The range of these outliers is between 491 and 2,180 μg/L.

5.0 EVIDENCE OF SSI'S FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSI is not the result of a release from the SCPD and that the SSI originates from an alternative source. The following bullets summarize the different lines of evidence that support this ASD:

- Construction documents for the SCPD indicating the 60-mil high-density polyethelyne (HDPE)
 geomembrane liner and a 2-foot thick clay barrier, verified byquality assurance testing during construction.
- Southward groundwater flow from the upgradient SCPA CCR Unit, currently in Corrective Action, toward the SCPD.
- Documentation of pre-existing, low-level concentrations of CCR indicators in groundwater that pre-date the SCPD operation, especially on the northern side of the SCPD.
- Comparison of concentrations in nearby monitoring wells prior to the placement of CCR in the SCPD.
- Geochemical signatures of groundwater, CCR Unit porewater, and leachate indicate SCPC monitoring well samples are similar to unaffected background groundwater, and do not reflect impacts from leachate managed at adjacent CCR Units.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 3** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Table 3: Types of CCR and Typical Indicator Parameters

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	BoronMolybdenumLithiumSulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	BromidePotassiumSodiumFluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the SCPD has historically received FGD type wastes that are managed at the SEC.

5.2 Evaluation of the Statistically Significant Boron Exceedance at UG-2

In 2018, an ASD was completed for the SCPB (fly ash pond) unit to the north/northwest of the SCPD and is available in the 2018 Annual Report for the SCPB on Ameren's publicly available website¹. In that ASD, porewater samples were collected from the SCPA and SCPB, and samples were collected in the shallow, intermediate (middle) and deep zones of the alluvial aquifer just outside of the two units. From this ASD, it was determined that CCR impacts found directly outside of the SCPB are from the SCPA and not the SCPB. Impacts were present at their highest concentrations at deeper depths, and groundwater chemistry was similar between the waters of the SCPA and the impacted wells. The SCPB ASD concluded these deeper impacts are from the SCPA because the SCPA is an unlined CCR unit that extends approximately 70 feet below ground surface, while the SCPB is an HDPE-lined, shallower CCR unit. Therefore, if impacts were from the SCPB, they would be expected to be concentrated in the shallow zone of the alluvial aquifer, whereas impacts from the SCPA would be present across all zones of the alluvial aquifer. Additionally, the SPCA has historically managed bottom ash, fly ash, and boiler slag. As displayed in **Table 2**, boron is a key indicator parameter for impacts from these types of CCR.

Figure 2 displays boron concentrations at UG-2 since state monitoring began in 2008. As displayed on Figure 2, there has been a previous spike in boron concentration in 2013 – 2014. This spike has been attributed to construction associated with the nearby SCL4A.

In 2018 and 2019, the SCPA moved from Assessment Monitoring into Corrective Action and an investigation into the nature and extent of impacts from the SCPA was completed. As a part of this investigation, samples were collected in the shallow, middle, and deep zones of the alluvial aquifer in multiple locations around the site. One set of piezometers (TP-5) was installed approximately 200 feet to the east of UG-2. In the TP-5 piezometers,

¹ Ameren's publicly available CCR reporting website is available at: (https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion/ccr-compliance-reports)

boron concentrations ranged from 211-263 μ g/L in the shallow zone of the alluvial aquifer; 3,120-3,190 μ g/L in the intermediate zone, and 5,460-8,250 μ g/L in the deep zone of the alluvial aquifer.

This increase in boron concentration with depth at TP-5 is indicative of impacts from the SCPA rather than the SCPB, SCPC, SCPD or SCL4A because the SCPA is unlined and extends downward 70 feet below ground surface, whereas the SCPB, SCPC, SCPD, and SCL4A are constructed with a liner system with a base elevation above the natural groundwater table. If impacts were from the SCPD, the greatest impacts would be expected in the shallow zone of the alluvial aquifer and would dilute and be expected to decrease with depth. Results from the nature and extent and corrective action investigations further indicate that impacts in the alluvial aquifer at the SEC are from the SCPA and not the other lined units.

For boron impacts to be from the SCPA, UG-2 would need to be hydraulically connected to the SCPA. As displayed on **Figure 1**, UG-2 is located approximately 1,500 feet at its nearest point to the south/southeast of the SCPA. As discussed in the Annual Reports for the SCPC and SCPD, publicly available on Ameren's website, groundwater flow direction within the uppermost aquifer is dynamic and influenced by seasonal changes in the water level in the adjacent Mississippi and Missouri Rivers, which affect water levels, gradients and flow directions in these water bodies. Groundwater in the alluvial aquifer will generally flow from the higher of the two rivers toward the lower elevation river. Water flows into and out of the alluvial aquifer as a result of fluctuating river water levels that produce "bank recharge" and "bank discharge" conditions. At this facility, groundwater can flow north or south toward the Mississippi and Missouri Rivers, depending on river levels.

River level elevations for the site can be estimated using nearby United State Geological Survey (USGS) gauges. Four nearby gauges are used to calculate the approximate river level of the Mississippi and Missouri Rivers at the SEC and are as follows:

- Grafton Illinois gauge on the Mississippi (USGS #05587450).
- Alton Illinois gauge on the Mississippi River (USGS # 05587500)
- St. Louis Missouri gauge on the Mississippi River (USGS #07010000)
- St. Charles Missouri gauge on the Missouri River (USGS #06935965)

A daily water gauge measurement is available for each of these four gauges since at least November 15, 1986. **Figure 3** summarizes the calculated Missouri and Mississippi River data at the plant. The Mississippi River level at the SEC is controlled by a series of locks and dams, with the nearest one being approximately 6 miles downriver at the Mel Price Alton Lock and Dam. This dam controls the river elevation on the Mississippi River near the SEC, minimizing impacts from flooding and drought and giving the Mississippi River a more consistent elevation, as displayed on **Figure 3**. The Missouri River does not have any dams located near the SEC, with the closest dam on the Missouri River being the Gavins Point Dam, located near Yankton, South Dakota. Therefore, the Missouri River is much more susceptible to larger variations in elevation caused by flooding and drought, as displayed in **Figure 3**.

Figure 4 displays the difference between the Mississippi and Missouri River for each day. **Table 6** provides a summary comparison of the Mississippi and Missouri River elevations at the plant. Using the data from January 1, 1987 to June 17, 2024, the Mississippi River was higher than the Missouri River on 7,634 of the 13,683 days (approximately 56% of the time). From 2021 through early 2024, there was a significant hydraulic gradient from the Mississippi to the Missouri River (southward), with 2023 being the second highest average gradient of southward groundwater flow since 1987 (2006 was the highest). This indicates that UG-2, which is south of the SCPA, is downgradient of the unit and hydraulically connected.

This southward flow of groundwater since 2021 has been confirmed by onsite water level measurements. Prior to each sampling event, water levels are recorded at all monitoring wells to determine groundwater flow rates and direction. Potentiometric surface maps generated from these water level measurements display a southward flow of groundwater from the SCPA toward UG-2 since 2021.

Table 4 – Summary of Mississippi and Missouri River Elevations

Year	Days Missouri River has Higher Elevation	Days Mississippi River has Higher Elevation	Average Annual Difference between Mississippi and Missouri Rivers (Results in Feet, number displays Mississippi River Elevation minus the Missouri River Elevation. Negative results indicate higher Missouri River, positive results indicate higher Mississippi River elevation)
1987	243	122	-1.38
1988	82	284	1.48
1989	41	324	2.24
1990	162	203	0.32
1991	92	273	1.34
1992	152	214	-0.20
1993	355	10	-3.05
1994	166	199	-1.17
1995	269	96	-1.62
1996	242	124	-0.98
1997	312	53	-1.70
1998	317	48	-2.21
1999	207	158	-1.15
2000	28	338	2.30
2001	133	232	0.66
2002	63	302	2.18
2003	28	337	3.12
2004	125	241	1.08
2005	88	277	1.91
2006	11	354	4.05
2007	141	224	0.71
2008	209	157	-0.29
2009	202	163	-0.32
2010	296	69	-1.79
2011	229	136	-1.58
2012	59	307	2.15
2013	51	314	2.46
2014	88	277	1.54
2015	177	188	-0.36
2016	196	170	-0.55
2017	154	211	0.46
2018	232	133	0.03
2019	349	16	-3.08
2020	234	132	-0.72
2021	160	205	0.31
2022	77	288	2.39
2023	20	345	3.38
2024	59	110	0.78
Total	5,990	7,472	Average Difference – 0.32 feet

5.3 Evaluation of the Statistically Significant Increase of Sulfate at TMW-5

Sulfate is a key indicator for potential CCR impacts because it is highly mobile in most hydrogeological environments, except where conditions are strongly reducing. The groundwater around the SCPD does not demonstrate strongly reducing conditions, such as negative oxidation reduction potential (ORP) and dissolved iron concentrations above 1 mg/L. No hydrogen sulfide odors have been reported at the SCPD.

The time series plot on **Figure 5** shows variability in sulfate concentrations at the TMW wells south of the SCPD since the onset of baseline monitoring. As displayed in the figure, sulfate concentrations ranged from 34.9 to 42.0 mg/L during the eight baseline sampling events at TMW-5. Since baseline sampling, there have only been four sulfate results at TMW-5, ranging from 36.8 to 72.8 mg/L. Two other SCPD monitoring wells are located approximately 520 and 610 feet to the east and west of TMW-5 as displayed in **Figure 1**: TMW-4 and TMW-6, respectively. Recent sulfate concentrations at TMW-6 are generally lower than baseline results, and recent concentrations at TMW-5 are higher than baseline results. This figure provides further evidence that the limited number of data points (8) used to calculate the intrawell UPL for sulfate at TMW-5 do not accurately reflect the natural geochemical variability within the groundwater. Sulfate concentrations in these monitoring wells have ranged from 30.7 to 47.7 mg/L and UPLs for these monitoring wells are 44.43 mg/L at TMW-4 and 51.85 mg/L at TMW-6. Based on the sulfate concentration range of the nearby wells, the sulfate concentration at TMW-5 in November 2023 is within the range of historical concentrations for adjacent wells, which indicates that the SSI for sulfate in TMW-5 is likely the result of a limited baseline sampling period that did not capture the full range of natural geochemical variability within the shallow zone of the alluvial aquifer.

Figure 6 displays sulfate results in TMW-5 compared to background results from site background wells BMW-1S and BMW-3S. This figure displays that the concentration of 50.0 J mg/L is below those reported for background wells at 12.3 – 61.1 mg/L. This demonstrates that the results from TMW-5 are below those of unimpacted background limits for sulfate in the shallow zone of the alluvial aquifer, and the full variability of sulfate in the shallow alluvial aquifer at this location has not been captured with the limited dataset.

To further investigate the geochemical variability of sulfate in the area of the SCPD, historical data from the state UWL wells [located on the south side of the UWL, outside the zone of impact from the SCPA] were reviewed. These UWL wells (labeled "DG-xx") were installed in 2008 and sampled on multiple occasions prior to the receipt of CCR at the SCPD and adjacent CCR units (SCPC and SCL4A). The DG-xx monitoring wells are screened at approximately the same depth as TMW-5 in the shallow zone of the alluvial aquifer. **Figure 7** displays a box and whisker plot of the sulfate concentrations within the alluvial aquifer prior to the receipt of CCR in the SCPC, SCPD, and SCL4A (prior to 7/30/2010). These plots reflect the high variability of sulfate in the vicinity of the SCPD, prior to any potential impacts from CCR placed in the area. As shown on **Figure 7**, the recent results at TMW-5 are within range of sulfate concentrations at the DG-xx wells prior to CCR placement. Concentrations in these wells range from 11.0 to 83.0 mg/L, with an average of 56.2 mg/L, which is greater than the current sulfate UPL at TMW-5.

5.3.1 Geochemical Signatures

Piper diagrams are useful visual aids for understanding water chemistry and identifying potential sources of geochemical variability both spatially and temporally. **Figure 8** displays a Piper diagram containing all sampling results at TMW-5. A leachate sample collected directly from within the SCPD CCR Unit by Gredell Engineering in December 2023 is also displayed on the diagram, representative of the geochemical signature of the CCR material managed at the SCPD. As displayed in the Piper diagram, results from each sampling event at TMW-5 plot in a tight grouping within the unimpacted background groundwater zone, indicating a lack of CCR impacts at these wells. The SCPD leachate sample plots within the SCPA pore-water zone, distinctly separate from the SCPD wells. Altogether, geochemical signature analysis from the Piper diagram indicates largely similar geochemical signatures between background groundwater and TMW-5, suggesting a lack of groundwater impacts from WFGD materials stored at the SCPD.

The lines of evidence listed above indicate that the sulfate concentration at TMW-5 in November 2023 is not the result of impacts from the SCPD but instead can be attributed to pre-existing impacts and variability in the alluvial aguifer combined with the limited dataset used for the calculation of the sulfate UPL at TMW-5.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY SCPD IMPACTS

Based on the information presented in Section 5.0 above, the SSIs reported for boron at UG-2 and sulfate at TMW-5 in November 2023 are not the result of impacts from the SCPD. The SSI for boron at UG-2 is not caused by the SCPD as there are boron impacts in the shallow, intermediate, and deep portions of the alluvial aquifer in this area, and net groundwater flow has been toward the south. The SSI for boron at UG-2 appears to be the result of southward migrating impacts from the SCPA, which is currently in Corrective Action. The SSI for sulfate at TMW-5 was also not caused by impacts from the SCPD and is attributable to natural geochemical variability in the alluvial aquifer. This is supported by highly variable sulfate concentrations at nearby wells that pre-date CCR placement in the area, concentrations below background wells, and the geochemical signature of TMW-5 being largely similar to unimpacted background groundwater. Along with these lines of evidence listed above, the SCPD is documented to be constructed with an engineered compacted clay liner overlain by a 60-mil HDPE geomembrane liner system, which was designed and constructed to properly contain CCR and prevent groundwater impacts.

7.0 REFERENCES

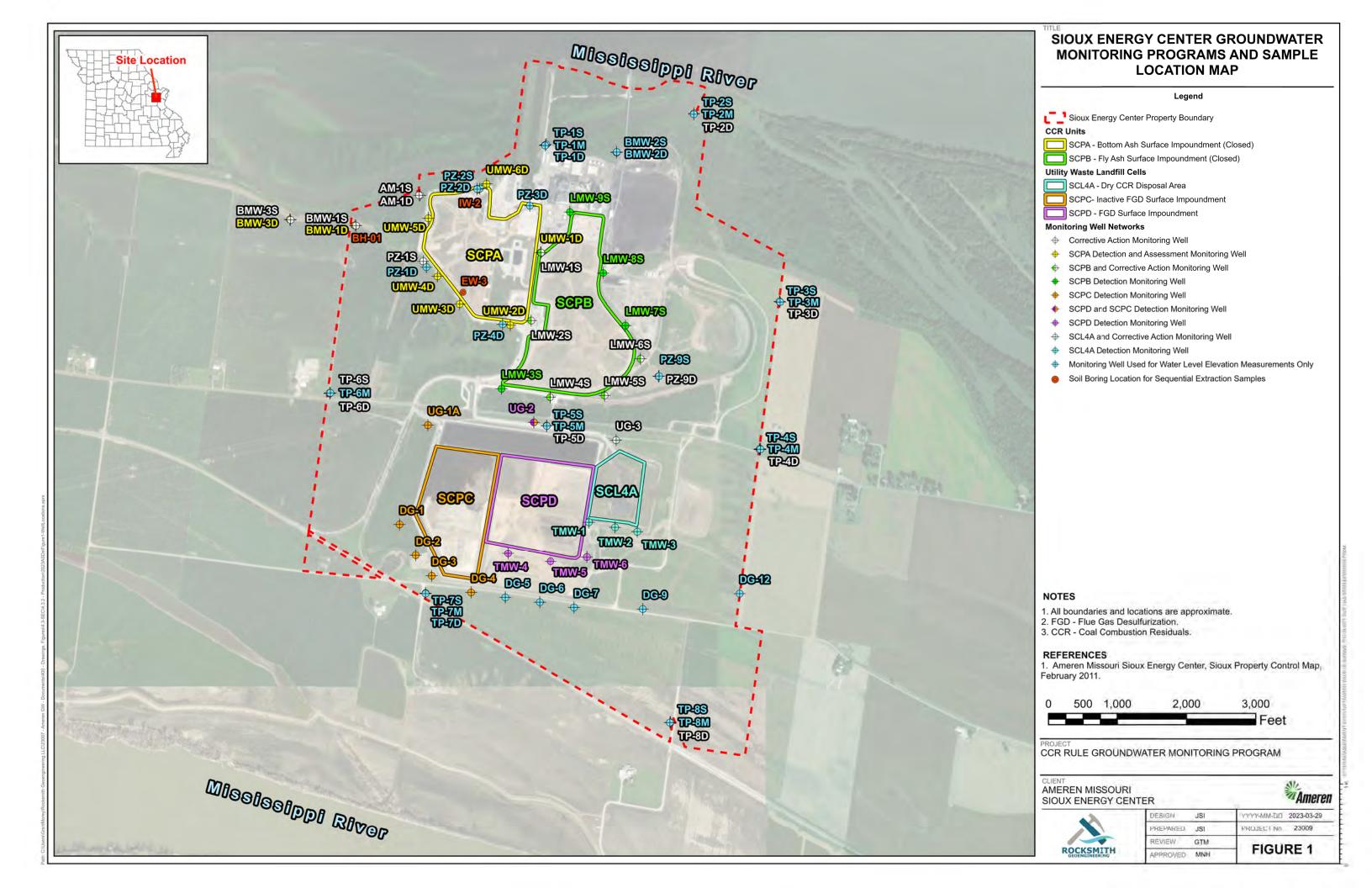
- Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Sioux Energy Center.
- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources, Inc. 2006. Detailed Geologic and Hydrologic Site Investigation Report. AmerenUE Sioux Power Plant Proposed Utility Waste Disposal Area. St. Charles County, Missouri. August 2006.
- GREDELL Engineering Resources, Inc. 2009. Background Groundwater Monitoring Report. AmerenUE Sioux Power Plant. St. Charles County, Missouri. June 2009.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc. 2014. Ameren Missouri Sioux Power Plant Utility Waste Landfill Proposed Construction Permit Modification Construction Permit Number 0918301 St. Charles County, Missouri, revised August 2014.
- Rocksmith Geoengineering, LLC, 2024a, 2023 Annual Groundwater Monitoring Report, SCPD Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA.

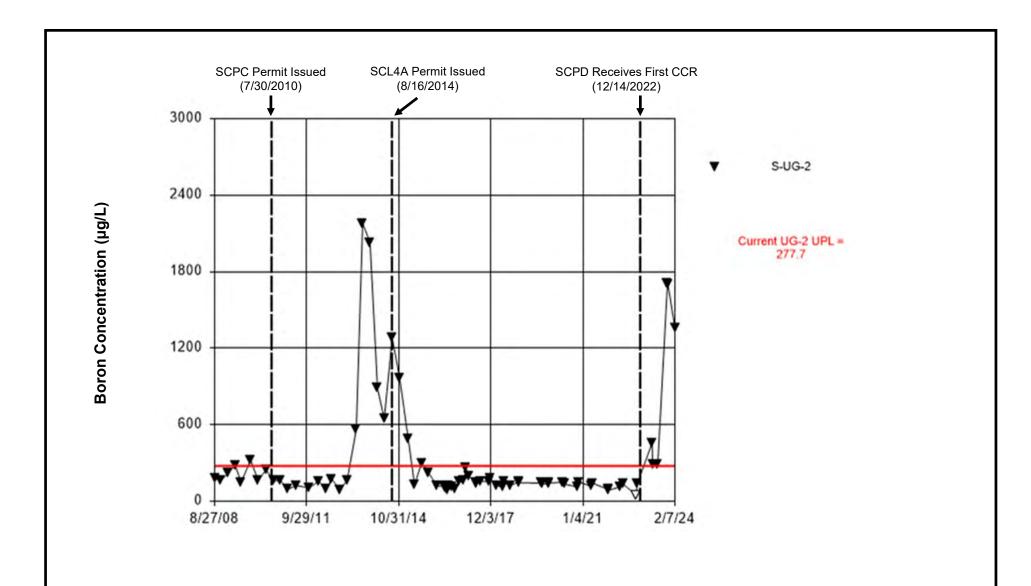
Rocksmith Geoengineering LLC, 2024b, Updated Statistical Limits with Additional Background Data, SCPD CCR Unit, Sioux Energy Center, St. Charles, Missouri.

- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].
- WSP USA Inc., 2022, 40 CFR Part 257 Groundwater Monitoring Plan, SCPD Sioux Energy Center St. Charles County, Missouri, USA.
- WSP USA Inc., 2022, Initial Detection Monitoring Upper Prediction Limits Using Baseline Sampling Data Utility Waste Landfill Cell 2 (SCPD), Sioux Energy Center, St. Charles Count, Missouri.
- WSP USA Inc., 2023, 2022 Annual Groundwater Monitoring Report, SCPD Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA.

Tables

Table 3 November 2023 Detection Monitoring Results SCPD Surface Impoundment Sioux Energy Center, St. Charles County, MO

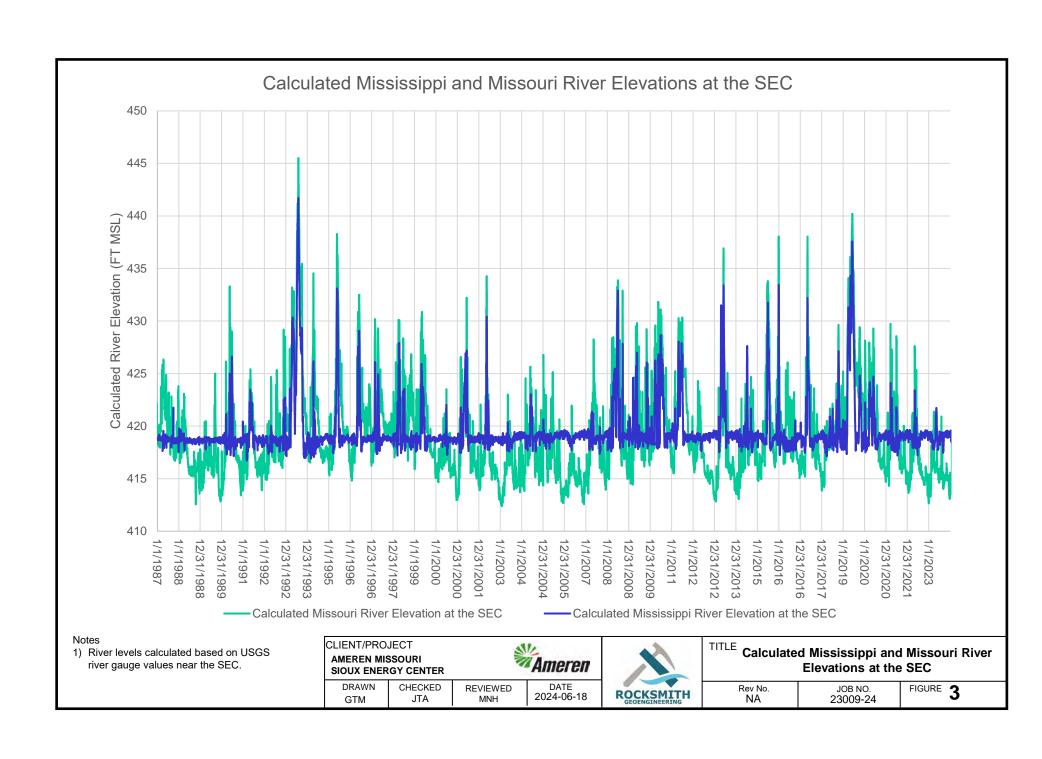

		BACKGR	OHND			GPOL	INDWATED M	ONITORING V	VELLS		
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-2	UG-2	Prediction Limit TMW-4	TMW-4	Prediction Limit TMW-5	TMW-5	Prediction Limit TMW-6	TMW-6
		•	No	ovember 202	3 Detection N	onitoring Eve	ent				
DATE	NA	11/10/2023	11/10/2023	NA	11/13/2023	NA	11/13/2023	NA	11/13/2023	NA	11/13/2023
рН	SU	7.04	7.14	6.29 - 7.5	7.10	6.585-7.26	7.06	6.642-7.223	6.95	6.59-7.093	6.95
BORON, TOTAL	μg/L	57.9 J	58.9 J	277.7	1,700	122.2	93.7 J	116.0	93.3 J	131.8	120
CALCIUM, TOTAL	μg/L	136,000	114,000	143,772	119,000	146,033	117,000 J	156,060	132,000	179,541	134,000
CHLORIDE, TOTAL	mg/L	7.2	13.4	93.74	12.9 J	3.216	2.0 J	2.435	1.4 J	11.02	2.0 J
FLUORIDE, TOTAL	mg/L	ND	ND	0.34	ND	0.48	ND	0.6744	ND	0.37	ND
SULFATE, TOTAL	mg/L	46.9	12.3	93.63	0.79 J	44.43	44.3 J	46.12	50.0 J	51.85	36.0 J
TOTAL DISSOLVED SOLIDS	mg/L	475	398	657.3	483	571	451	600.6	516	719.8	542
			F	ebruary 2024	Verification :	Sampling Ever	nt				
DATE	NA				2/7/2024				2/7/2024		
рН	SU										
BORON, TOTAL	μg/L				1,360						
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L								72.8		
TOTAL DISSOLVED SOLIDS	mg/L										

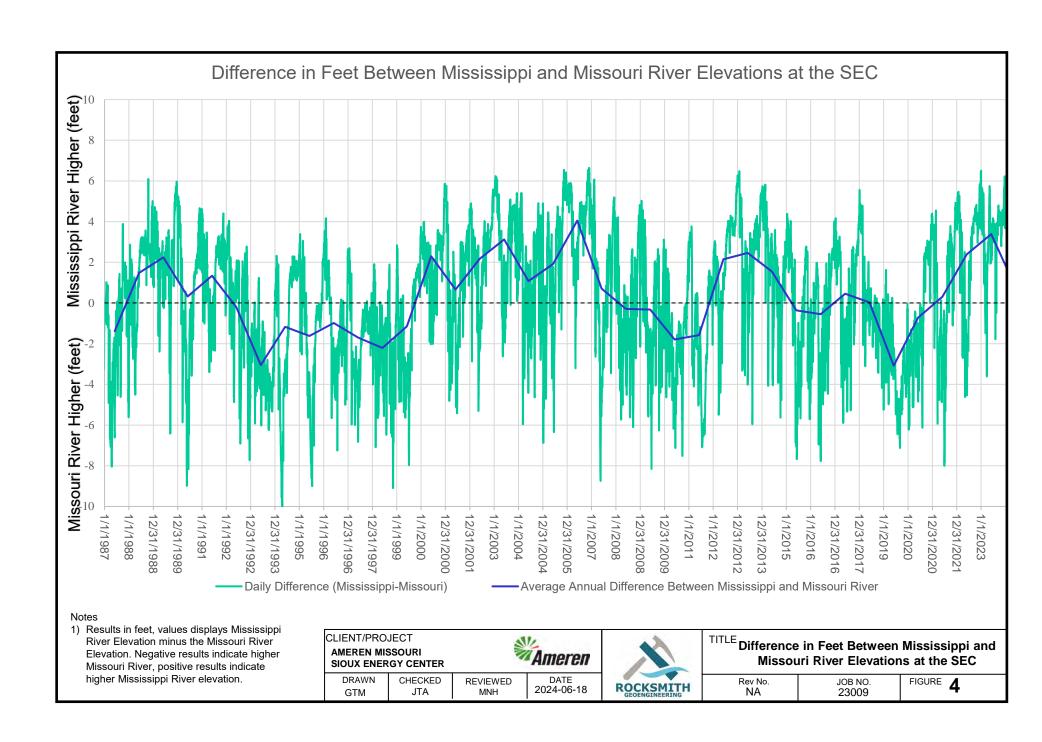

NOTES:

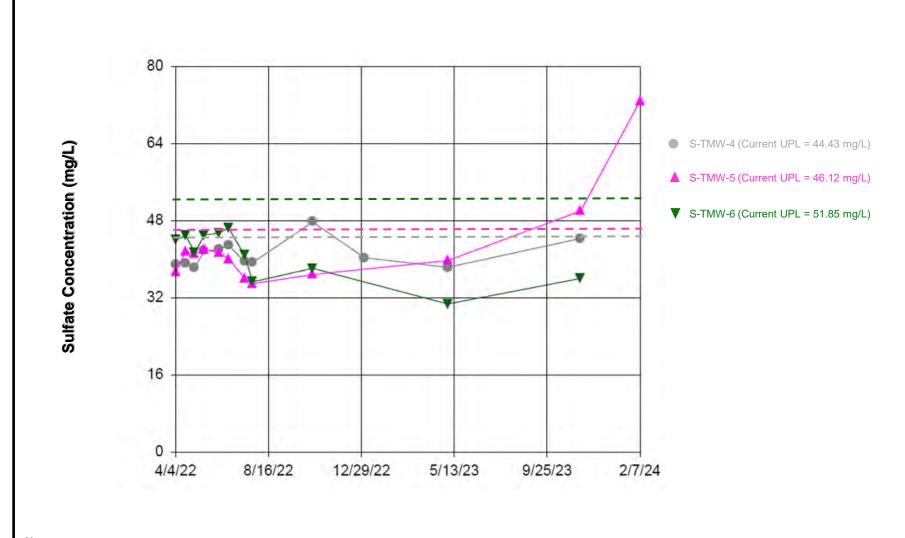
- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 7. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Figures

μg/L – Micrograms per liter.
 UPL – Upper Prediction Limit.


UWL – Utility Waste Landfill.
 CCR – Coal Combustion Residuals.

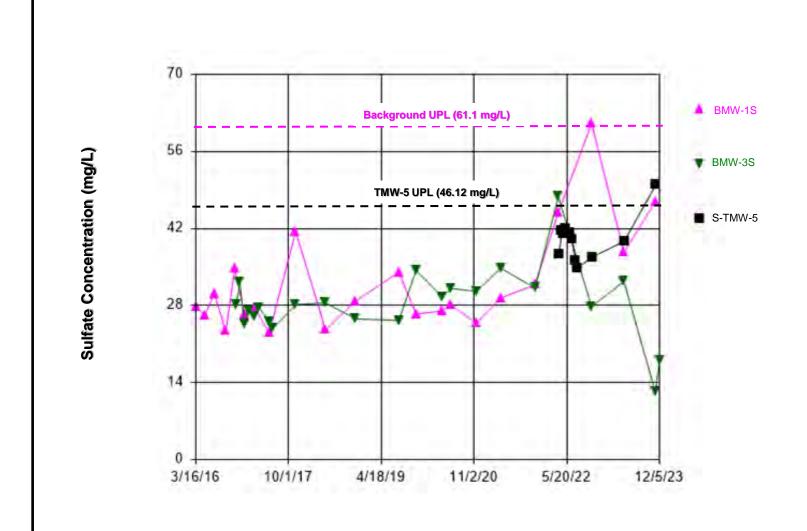

CLIENT/PRO	JECT	AL		
AMEREN MIS			Ameren	
DRAWN GTM	CHECKED JTA	REVIEWED MNH	DATE 2024-06-18	


ROCKSMITH

TITLE Timeseries Plot of Boron	Concentrations at
UG-2	

Rev No. FIGURE 2 JOB NO. 23009-24

- mg/L Milligrams per liter.
 UPL Upper Prediction Limit.
 UWL Utility Waste Landfill.
 CCR Coal Combustion Residuals.


CLIENT/PRO- AMEREN MIS SIOUX ENER	SSOURI	X Ameren		
DRAWN	CHECKED	REVIEWED	DATE	
GTM	JTA	MNH	2024-06-20	

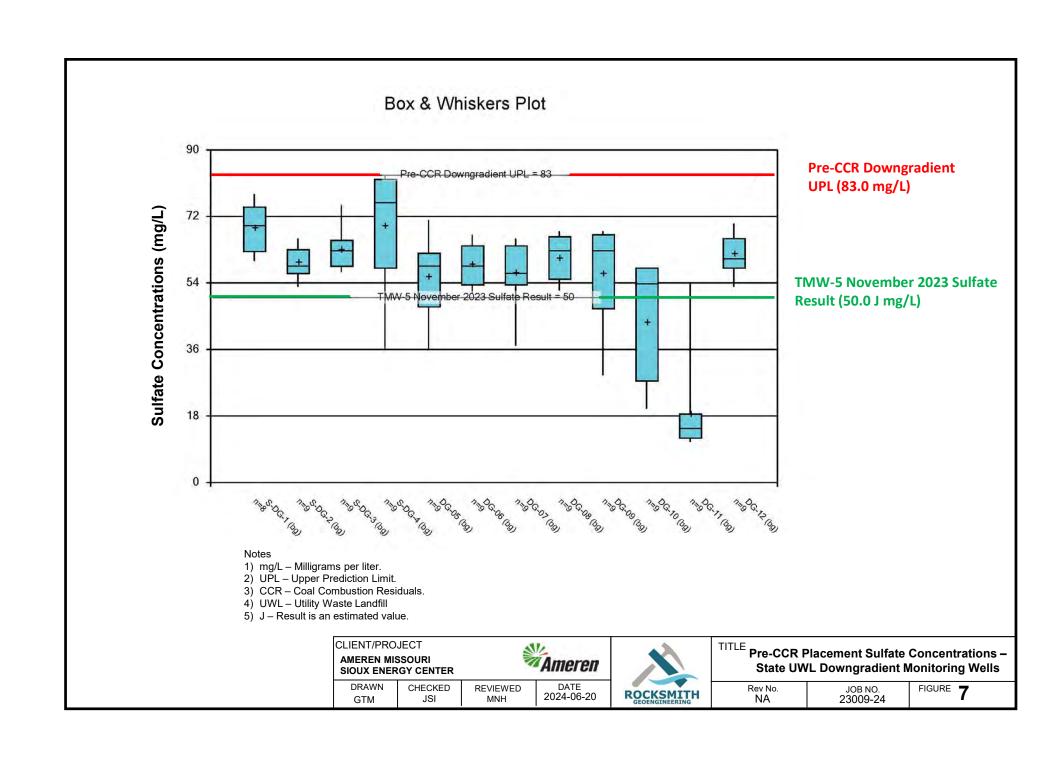
GTM

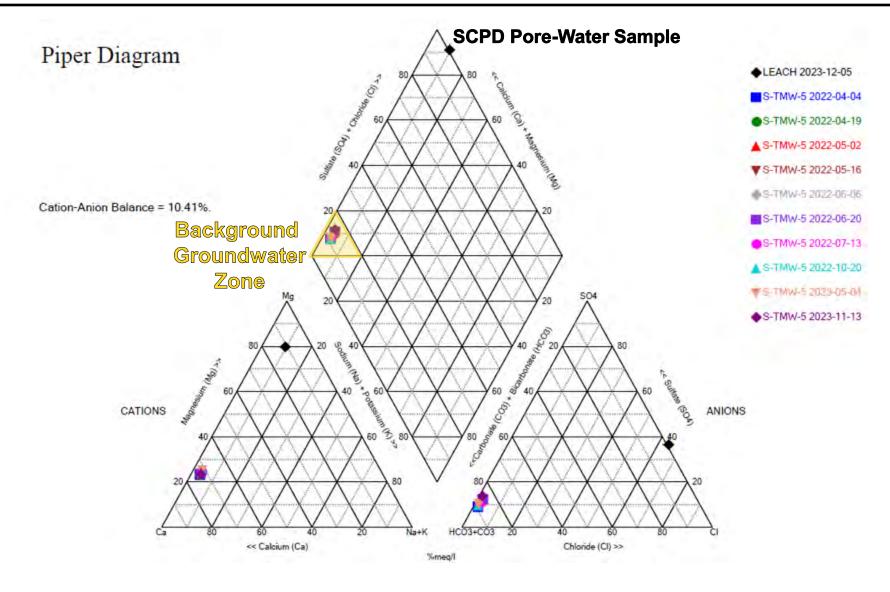
11	
ROCKSMITH	

Timeseries Plot of Sulfate Concentrations at Downgradient SCPD Wells

Rev No.	JOB NO.	FIGURE 🗲
NA	23009-24	5

- mg/L Milligrams per liter.
 UPL Upper Prediction Limit.
- 3) UWL Utility Waste Landfill.
 4) CCR Coal Combustion Residuals.


CLIENT/PROJECT AMEREN MISSOURI				
SIOUX ENER	GY CENTER			
DRAWN	CHECKED	REVIEWED		
GTM	JSI	MNH		


M Ameren DATE 2024-06-20

ROCKSMITH

Timeseries Plot of Sulfate Concentrations
at TMW-5 and Background Wells

FIGURE 6 Rev No. NA JOB NO. 23009-24

- 1) Piper diagram generated using Sanitas Software.
- 2) %mEq/I milliequivalents per liter
- 3) LEACH SCPD Leachate sample collected by Gredell Engineering in December 2023.

CLIENT/PROJECT AMEREN MISSOURI SIOUX ENERGY CENTER		Ameren			TITLE TMW-5 and SCPD Leachate Piper Diagram		
DRAWN GTM	CHECKED JTA	REVIEWED MNH	DATE 2024-06-20	ROCKSMITH GEOENGINEERING	Rev No. NA	JOB NO. 23009-24	FIGURE 8

January 31, 2025 Rocksmith Geoengineering
Project Number: 23009-24

Appendix C

Alternative Source Demonstration – May 2024 Sampling Event

REPORT

SCPD - Alternative Source Demonstration

Sioux Energy Center, St. Charles County, Missouri, USA

January 3, 2025

Project Number: 23009-24

Submitted to:

Ameren Missouri 1901 Chouteau Ave St. Louis, MO 63103

Submitted by:

Rocksmith Geoengineering, LLC 2320 Creve Coeur Mill Rd Maryland Heights, MO 63043

Table of Contents

1.0	Certification Statement	1
2.0	Introduction	2
3.0	Site Description and Background	2
3.1	Geological and Hydrogeological Setting	2
3.2	Utility Waste Landfill – SCPD	2
3.3	CCR Rule Groundwater Monitoring	3
4.0	Review of the Statistically Significant Increases	3
5.0	Evidence of SSIs from Alternative Source	4
5.1	CCR Indicators	5
5.2	Site Specific Key CCR Indicators	5
5.3	Concentrations of Key FGD Indicators in Monitoring Wells with SSI	7
5.4	Evaluation of SSIs	
5	.4.1 Evaluation of the Statistically Significant Increase of Chloride at TMW-6	7
5	.4.2 Evaluation of the Statistically Significant Increase of Sulfate at TMW-4 and TMW-5	
6.0	Demonstration that SSI was not caused by SCPD Impacts	10
7.0	References	12

TABLES

- **Table 1** May 2024 Detection Monitoring Results
- **Table 2** Review of Statistically Significant Increase (Embedded in Text)
- Table 3 Types of CCR and Typical Indicator Parameters (Embedded in Text)
- Table 4 Summary of FGD Impact Indicator Parameters at the Sioux Energy Center (Embedded in Text)

FIGURES

- Figure 1 Sioux Energy Center Groundwater Monitoring Programs and Sample Location Map
- Figure 2 Timeseries Plot of Boron Concentrations at Downgradient SCPD Wells
- Figure 3 Timeseries Plot of Fluoride Concentrations at Downgradient SCPD Wells
- Figure 4 Timeseries Plot of Chloride Concentrations at Downgradient SCPD Wells
- Figure 5 Timeseries Plot of Sulfate Concentrations at Downgradient SCPD Wells
- Figure 6 Timeseries Plot of Calcium Concentrations at Downgradient SCPD Wells
- Figure 7 Pre-CCR Placement Chloride Concentration State UWL Downgradient Monitoring Wells
- Figure 8 Pre-CCR Placement Sulfate Concentration State UWL Downgradient Monitoring Wells

i

1.0 CERTIFICATION STATEMENT

This SCPD – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA has been prepared to comply with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) rule) under the direction of a licensed professional engineer with Rocksmith Geoengineering, LLC.

I hereby certify that this SCPD – Alternative Source Demonstration, Sioux Energy Center, St. Charles County, Missouri, USA located at 8501 Missouri 94, West Alton, Missouri 63386 has been prepared to meet the requirements of 40 CFR §257.94(e)(2).

Rocksmith Geoengineering, LLC.,

Mark Haddock, P.E., R.G.

Principal Engineer, Senior Partner

2.0 INTRODUCTION

In accordance with the United States Environmental Protection Agency (EPA) coal combustion residual (CCR) rule (CCR Rule or The Rule), this SCPD – Alternative Source Demonstration has been prepared to document an Alternative Source Demonstration (ASD) for two Statistically Significant Increase (SSIs) identified for Ameren Missouri's (Ameren's) Sioux Energy Center (SEC), Utility Waste Landfill (UWL) SCPD (Cell 2). This document satisfies the requirements of §257.94(e)(2), which allows the owner or operator to demonstrate that a source other than the CCR Unit has caused an SSI and that the apparent SSIs were the result of an alternative source or resulted from errors in sampling, analysis, statistical evaluation, or natural variation in groundwater quality.

3.0 SITE DESCRIPTION AND BACKGROUND

Ameren owns and operates the SEC in St. Charles County, Missouri located approximately 12 miles west-northwest of the confluence of the Mississippi and Missouri Rivers. **Figure 1** depicts the site location and layout, including the location of SCPD. The SEC is approximately 1,025 acres and is located in the floodplain between the Mississippi and Missouri Rivers. The SEC is bounded to the north by wooded areas associated with the Mississippi River; to the south by a railroad; and to the east and west by agricultural fields.

3.1 Geological and Hydrogeological Setting

Hydrogeologically, the SCPD lies between the Mississippi River to the north and the Missouri River to the south. Flow and deposition from these rivers have resulted in thick alluvial deposits that lie unconformably on top of bedrock. These alluvial deposits range from approximately 100 to 130 feet in thickness and comprise the uppermost aquifer, called the alluvial aquifer. Overall, this aquifer is described as a fining upwards sequence of stratified sands and gravels with varying amounts of silt and clay. Drilling in the alluvial aquifer identified different sub-units, including floodplain deposits, natural levee deposits, and channel deposits along with volumetrically less important loess deposits. Grain sizes of these alluvial deposits are variable.

Beneath the alluvial aquifer lies the bedrock aquifer. Bedrock in this region includes Mississippian-aged rocks of the Meramecian Series. Formations include primarily limestone, dolomite, and shale and are comprised of the Salem Formation overlying the Warsaw Formation and the Burlington-Keokuk Formation.

3.2 Utility Waste Landfill – SCPD

UWL Cell 2 is referred to by Ameren as the SCPD, or "Gypsum Pond" Cell 2. The SCPD is approximately 36 acres in size and is located south of the generating plant on the south side of Highway 94 (**Figure 1**). The CCR Unit, which began operation on December 14, 2022, manages CCR from the SEC Wet Flue-Gas Desulfurization System (WFGD).

The WFGD process occurs after the removal of slag and fly ash. A crushed limestone (CaCO₃) mix is introduced into the boiler flue gas flow. The limestone reacts with sulfur dioxide (SO₂) in the flue gas and produces 'synthetic' gypsum (calcium sulfate dihydrate (CaSO₄ * 2H₂O)). The resultant gypsum material was formerly wet sluiced from the plant across the highway to the SCPC, and has been wet sluiced to SCPD since December 14, 2022. Once there, the gypsum material is dewatered by gravity, with the sluice conveying recycled water back to the WFGD for reuse. The primary soluble constituents of the gypsum CCR are sulfate, calcium, chloride, and sodium (Gredell and Reitz & Jens 2014).

The SCPD is bounded immediately on the west by the SCPC surface Impoundment (UWL Cell 1), northeast by the SCL4A landfill cell (UWL Cell 4a), the north by the UWL recycle pond, and south/southeast by low lying agricultural floodplain. The perimeter berm surrounding the SCPD is constructed to an elevation of 446 feet above mean sea level (MSL), which is approximately 5 feet above 100-year flood elevation of 441.2 feet MSL and about 12 to 18 feet above the surrounding low-lying farmland. This berm elevation is equivalent to the adjacent SCPC, SCL4A, and UWL recycle pond areas. Additionally, the SCPD is lined with a bottom composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil flexible high-density polyethylene (HDPE) geomembrane liner. This liner system has a base elevation (top of liner/base of CCR) of approximately 432 feet MSL at its lowest point.

A groundwater monitoring well network was installed in 2007 and 2008 in order to permit the UWL construction. This monitoring well network was approved by the Missouri Department of Natural Resources (MDNR) and

consists of 16 monitoring wells ringing the current and proposed future extents of the UWL (**Figure 1**). These monitoring wells are installed in the uppermost portions of the alluvial aquifer, just below the seasonally low elevation for groundwater. Quarterly groundwater samples have been collected in these monitoring wells since June 2008 for the Missouri UWL parameters. Placement of WFGD materials in the SCPD started on December 14, 2022.

3.3 CCR Rule Groundwater Monitoring

As required by the CCR Rule, prior to the initial receipt of CCR on December 14, 2022 the following were completed: (1) a groundwater monitoring well system was installed and certified by a Professional Engineer, (2) a Statistical Method Certification was prepared and certified by a Professional Engineer, (3) a Groundwater Monitoring Plan (GMP) was prepared recording the design, installation, development, sampling procedures, as well as statistical methods, and placed in the owner's operating record, and (4) eight baseline groundwater sampling events were completed for all Appendix III and Appendix IV parameters of CCR Rule.

The groundwater monitoring system for the SCPD consists of six monitoring wells screened in the uppermost aquifer (alluvial aquifer) as shown on **Figure 1**. One monitoring well (UG-2) was installed by Gredell Engineering Resources, Inc. (Gredell) in December 2007 as a part of the Missouri UWL state monitoring program. This monitoring well is used in both the SCPC and SCPD groundwater monitoring well networks. The background monitoring wells (BMW-1S and BMW-3S) were installed by Golder Associates Inc. (Golder) in 2016 for CCR Rule groundwater monitoring purposes. Three monitoring wells (TMW-4, TMW-5, and TMW-6) were installed in March 2022 to the south and southeast of the SCPD by WSP USA, Inc. (WSP) specifically for CCR groundwater monitoring of the SCPD. More information on the design and installation of the monitoring wells is provided in the SCPD GMP (WSP 2022) and the SCPD 2022 Annual Report (WSP 2023).

Between May 2016 and June 2017, eight baseline sampling events were completed for the existing monitoring wells used to monitor the SCPD (UG-2, BMW-1S, and BMW-3S). Eight baseline sampling events were also completed between March and October of 2022 for TMW-4, TMW-5, and TMW-6. After baseline sampling, the first Detection Monitoring event was completed in May 2023. The following Appendix III constituents were analyzed during Detection Monitoring:

- Boron
- Calcium
- Chloride
- pH
- Sulfate
- Total Dissolved Solids (TDS)
- Fluoride

In January 2023, background results from the eight baseline sampling events were used to calculate statistical upper prediction limits (UPLs) for wells TMW-1, TMW-2, and TMW-3. Since monitoring well UG-2 is included in both the SCPC and SCPD monitoring networks, statistical limits for this well follow those used for SCPC monitoring, which were updated in March 2024 (Rocksmith 2024). These UPLs were then compared to the Detection Monitoring results from the May 2023 sampling event and subsequent sampling events. If a result from the Detection Monitoring event is higher than the calculated UPL, it is classified as an initial exceedance, and a verification sample is then collected and tested in accordance with the SCPD Statistical Analysis Plan (SAP). In May 2024, three initial exceedances were identified: sulfate at TMW-4, sulfate at TMW-5, and chloride at TMW-6. Verification sampling in July 2024 confirmed each initial exceedances as SSIs. Results from this sampling event are provided in **Table 1**.

4.0 REVIEW OF THE STATISTICALLY SIGNIFICANT INCREASES

Monitoring wells TMW-4, TMW-5, and TMW-6 are screened in the upper portion of the alluvial aquifer, just below the average seasonal low elevation for groundwater. As shown in **Figure 1**, TMW-4 and TMW-5 are located immediately south of the SCPD, and TMW-6 is located adjacent to the southeast corner of the unit. The SCPD is located south of the generating plant, Highway 94, and the two surface impoundments near the plant (SCPA and SCPB), and north of Dwiggins Road.

Based on Rocksmith's review of the pre-disposal data (discussed in Section 3.2 above), as well as our comparison of the pre-disposal data with the results from the eight CCR-rule baseline events, it was concluded that the groundwater in some areas around the SCPD contains low-level pre-existing impacts from CCR that pre-date SCPD construction and operation. As a result of these pre-existing impacts, the SCPD statistical analysis plan uses intrawell UPLs to determine SSIs. Intrawell UPLs are calculated from historical data within a particular well, and not by pooling data from the background wells, such that individual limits are calculated for each constituent in each well in the monitoring program. A summary table of the May 2024 SSIs is provided in **Table 2**.

Table 2: Review of Statistically Significant Increases

Constituent	Well ID	Current UPL	Range of Values Prior to May 2024 Sampling Event	May 2024 Result	July 2024 Result
Sulfate (mg/L)	TMW-4	44.43	38.3 – 47.7	73.9 J	69.2 J
Sulfate (mg/L)	TMW-5	46.12	34.9 – 72.8	72.1	64.6
Chloride (mg/L)	TMW-6	11.02	1.3 – 9.6	16.5	28.2 J
Chloride (mg/L)	Background Wells (BMW-1S & BMW-3S)	13.65	6.3 – 13.4	7.2 & 11.1	NS
Sulfate (mg/L)	Background Wells (BMW-1S & BMW-3S)	61.1	12.3 – 61.1	37.7 & 19.7	NS

Notes:

- 1) mg/L milligrams per liter.
- 2) µg/L micrograms per liter.
- 3) UPL Upper Prediction Limit. UPLs calculated using Sanitas™ software.
- 4) ND Non-Detect.
- 5) J Result is an estimated value.
- 6) NS Not sampled.

5.0 EVIDENCE OF SSIS FROM ALTERNATIVE SOURCE

Several different lines of evidence indicate that the SSI is not the result of a release from the SCPD and that the SSI originates from an alternative source. The following bullets summarize the different lines of evidence that support this ASD:

- Lack of elevated key FGD Indicators (boron, fluoride, calcium) above pre-CCR placement levels at monitoring wells TMW-4, TMW-5, and TMW-6.
- Documentation of pre-existing, low-level concentrations of CCR indicators in groundwater that pre-date the SCPD operation nearby these downgradient monitoring wells.
- Current UPLs for each of these wells were calculated from only eight baseline sampling events, which likely do not capture the full natural geochemical variability of the aquifer.
- Surface conditions in the vicinity of these wells have been variable since their installation and are not representative of conditions during the baseline sampling period.
- Sulfate at TMW-4 in May 2024 was flagged being biased high during data validation procedures.
- Construction documents for the SCPD indicating the 60-mil high-density polyethelyne (HDPE)
 geomembrane liner and a 2-foot thick clay barrier, verified by quality assurance testing during construction.

5.1 CCR Indicators

Several types of CCR byproducts are generated by coal-fired power plants. The different types of CCR typically display distinct geochemical signatures and indicator parameters. **Table 3** below describes the different types of CCRs and their typical indicator parameters (USEPA 2018, EPRI 2011, EPRI 2012, and EPRI 2017).

Table 3: Types of CCR and Typical Indicator Parameters

Type of CCR	Description of CCR (USEPA 2018)	Key Indicators (EPRI 2011, 2012, 2017)
Fly Ash	Fine grained, powdery material composed mostly of silica made from the burning of finely ground coal in the boiler.	BoronMolybdenumLithiumSulfate
Boiler Slag / Bottom Ash	Molten bottom ash from the slag tap and cyclone type furnaces that turns into pellets that have a smooth glassy appearance after quenching with water.	BromidePotassiumSodiumFluoride
Flue Gas Desulfurization Material (FGD)	A material leftover from the process of reducing sulfur dioxide emissions from a coal-fired boiler that can be a wet sludge consisting of calcium sulfite or calcium sulfate or a dry powdered material that is a mixture of sulfites and sulfates.	 Sulfate Fluoride Calcium Boron Bromide Chloride

Notes:

- 1) Fly ash and boiler slag/bottom ash typically have the same indicator parameters.
- 2) Definitions from USEPA website, available at https://www.epa.gov/coalash/coal-ash-basics.
- 3) Key indicators from EPRI 2011, 2012, and 2017 as well as Gredell and Reitz & Jens, 2014.

As described above, the SCPD has historically received FGD type wastes that are managed at the SEC.

5.2 Site Specific Key CCR Indicators

To be a key CCR Indicator parameter for a specific site, a constituent should be present in relatively high concentrations in the leachate (CCR porewater) when compared to background or other sources (nearby rivers, etc.), not be a common anthropogenic contaminant, and be mostly non-reactive and mobile in the site hydrogeological environment (EPRI 2012). In 2012, EPRI investigated which constituents are the best indicator parameters for coal ash impacts as outlined in **Table 1**. Of the key indicators listed in **Table 1** for flue gas desulfurization material, sulfate, fluoride, calcium, boron, and chloride are regularly sampled as part of the CCR Rule. Testing for bromide has not been completed at this site.

Table 2 provides a snapshot of the concentrations present onsite in background groundwater, Mississippi River, Missouri River, SCPA porewater, and SCPD leachate for the constituents sampled on the key indicator list for FGD material.

Table 4 - Summary of FGD Impact Indicator Parameters at the Sioux Energy Center

Constituent (Units)		Back- ground	Mississippi River ¹	Missouri River ¹	SCPA Porewater	SCPD Leachate	Advantages and Caveats as Key Indicator (from EPRI 2012)					
	Minimum	12.3	29.9	188	48.5							High concentrations expected in both washed and unwashed FGD gypsum.
Sulfate	Average	31.03	34.08	192.1	1,088	F 000	Commonly analyzed. Very mobile in all					
(mg/L)	Maximum	61.1	40.5	196	2,080	5,820	hydrogeologic environments. Less useful in strongly reducing environments where sulfate can be reduced to hydrogen-sulfide gas.					
Fluoride	Minimum	ND (<0.086)	0.16	0.43	0.22	hydrogeologic er 68.0 that leachate cor		Mobile and non-reactive in common hydrogeologic environments. Assure				
(mg/L)	Average	0.2735	0.196	0.4435	1.142		that leachate concentration is higher than background, particularly for					
	Maximum	0.46	0.24	0.46	2.9		washed gypsum.					
	Minimum	97,100	42,500	63,000	73,400		High concentrations expected in both washed and unwashed FGD gypsum.					
Calcium	Average	129,001	50,255	64,385	409,680	911,000	Understanding of carbonate chemistry					
(µg/L)	Maximum	184,000	58,500	65,400	825,000		necessary to assure that precipitation or dissolution does not affect downgradient concentrations.					
	Minimum	42.4	27.1	110	348		Mobile indicator constituent for					
Boron (µg/L)	Average	94.05	36.4	112.3	53,266	239,000	unwashed FGD gypsum. Concentrations for washed gypsum					
(1.2.	Maximum	240	59.9	117	111,000		may be too low to be useful.					
	Minimum	1.9	22.2	23.3	20.5		Mobile indictor constituent for					
Chloride	Average	8.625	27.06	23.48	24.34	7,390	unwashed FGD gypsum. Concentrations may be very high if					
(mg/L)	Maximum	16.8	41.0	23.9	27.1	,	transport water is recirculated. Concentrations for washed gypsum may be too low to be useful.					

Notes:

- 1) Unit abbreviations mg/L milligrams per liter, µg/L micrograms per liter
- 2) ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.
- 3) SCPA porewater samples collected by Golder Associates in January 2018.
- 4) A single leachate sample was collected directly from the SCPD by Gredell Engineering Resources, Inc. in December 2023. The SCPD currently collects WFGD material that was once sluiced to the SCPC until December 2022.

Boron has previously been attributed as a primary indicator for CCR impacts at the site, particularly for bottom and fly ash impacts. As shown in **Table 2**, the FGD leachate material contained in the SCPC (as well as the adjacent SCPD) contains significantly higher concentrations of key indicator parameters than other potential sources at the SEC. The following describes the practicality of each of the key FGD indicators for determining CCR impacts from the SCPC:

Boron, which is typically the most mobile of CCR-related constituents, would be expected to have the most notable increase if there were impacts from the SCPC/SCPD. Of the key FGD indicators listed above, the boron concentration in SCPD leachate is greatest relative to background groundwater at the site (2,541 times higher concentration in SCPD leachate than average background groundwater). Other key FGD indicators are lower in terms of their relative concentrations in leachate compared to background groundwater. Additionally, boron has low concentrations in the adjacent Missouri and Mississippi Rivers;

¹ Mississippi and Missouri River samples collected September 21 & 22, 2017 and May 8, 2018. Results are available on Ameren's public website at https://www.ameren.com/company/environment-and-sustainability/managing-coal-combustion/ccr-compliance-reports/sioux-energy-center.

therefore, elevated boron is likely from a CCR unit, whether it be the SCPA, SCPB, SCPC, SCPD, or SCL4A.

- Fluoride may be a very good FDG indicator parameter because it is typically mobile in most geological environments and is present in SCPD leachate at a level 248 times greater than average background groundwater concentrations. Background fluoride concentrations are also similar to Mississippi and Missouri River concentrations; therefore, an apparent source of increased fluoride could be from FGD impacts. Fluoride concentrations are also much higher in FGD leachate than SCPA porewater, indicating that if increased fluoride is occurring, it would be suspected that the impacts may be from FGD and not fly ash or bottom ash as managed by the SCPA.
- Chloride may be a good FGD indicator parameter because it is mobile in most geological environments and is present in SCPD leachate at a level 856 times greater than average background groundwater concentrations. However, chloride concentrations can be greatly affected by the use of road salt (NaCl) for road deicing. Chloride concentrations for the DG-xx wells installed south of the UWL were measured as high as 125 mg/L prior to any placement of CCR materials in the UWL (prior to June 30, 2010). Additionally, surface water samples collected from the Mississippi and Missouri Rivers near the SEC average approximately 27 and 23 mg/L of chloride, respectively. Therefore, if chloride concentrations are significantly greater than those other alternative sources (greater than approximately 125 mg/L), then chloride can be a good indicator parameter for FGD impacts. At concentrations lower than this, chloride is less effective as a FGD indicator at the SEC.
- Sulfate may be a good FGD indicator parameter as well because it is mobile in most geological environments and is present at a level 187 times greater than average background groundwater concentrations. However, based on surface water sampling near the SEC, sulfate concentrations in the Mississippi and Missouri Rivers reach up to approximately 196 mg/L. Therefore, if sulfate concentrations are significantly greater than concentrations in the nearby rivers and background groundwater (greater than approximately 200 mg/L), then it may be a good indicator for CCR indicator for fly ash, bottom ash, or FGD impacts. At concentrations lower than this, sulfate is less effective as an FGD indicator at the SEC.
- Calcium may be a useful FDG Indicator parameter; however, it is not always mobile in all geological environments and an understanding of carbonate chemistry necessary to assure that precipitation or dissolution does not affect downgradient concentrations. Additionally, calcium concentrations are only 7 times greater in the FGD leachate than average background groundwater at the site. Significant increases in calcium may indicate an FGD impact; however, increases would be expected to be less notable than other key indicators, such as boron and fluoride.

5.3 Concentrations of Key FGD Indicators in Monitoring Wells with SSI

The SCPC was permitted to receive FGD material beginning in July 2010, and receipt of FGD material ceased on December 14, 2022, when the SCPD began receiving FGD material. Monitoring wells TMW-4, TMW-5, and TMW-6 were installed in March of 2022 and since that time, concentrations of boron, fluoride and calcium, key FGD indicators have remained steady or decreased. **Figures 2-6** display historical concentrations of each of the key indicator parameters of FGD impacts at downgradient SCPD monitoring wells. As displayed in the figures, TMW-4, TMW-5, and TMW-6 do not show increases in the two most effective FGD indicators at the site (boron and fluoride) following receipt of CCR in the SCPD. This behavior of key FGD indicators at each of these wells is strong evidence that impacts from the SCPD are not occurring, and a source other than CCR is likely the cause of the SSIs.

5.4 Evaluation of SSIs

5.4.1 Evaluation of the Statistically Significant Increase of Chloride at TMW-6

As discussed in Section 5.2, chloride can be a good indicator of FGD impacts to groundwater, especially when concentrations are significantly greater than those present in the Mississippi and Missouri Rivers (up to approximately 27 mg/L) and are greater than those present from road salt application impacts (greater than approximately 125 mg/L). The nearest public roadways to TMW-4, TMW-5, and TMW-6 are Highway 94, approximately 2,000 feet to the north, and Dwiggins Road, approximately 500 feet to the south. A paved CCR haul road also exits to the north of UWL area, just south of Highway 94. Since the beginning of SCPD construction in 2022, there have been significant disturbances to surface conditions in the vicinity of these wells.

Equipment and material haul roads were built to the south and east of the SCPD in 2022, as well as a gravel parking lot to the south of the unit (shown inset aerial image taken 6/5/2023). In late 2023, a temporary gravel road associated closure of the SCPC and construction of the SCPD was built directly south of TMW-4 and TMW-5 (shown in the inset aerial image taken 4/16/2024). As of November 2024, the gravel road, parking lot, and temporary haul roads no longer exist; however, a permanent gravel road now exists inside the perimeter fence surrounding the SCPD, at the toe of the berm. Since the installation of these wells, surface conditions in their vicinity have been variable, and are not representative of surface conditions during baseline sampling. These changing surface conditions may contribute to geochemical variability observed within these shallow monitoring wells installed at an approximate depth of only 30 feet.

In May 2024, the chloride concentration at TMW-6 was 15.5 mg/L, and the concentration measured during the July 2024 verification sampling event was 28.2 J mg/L. These values are just above the original calculated UPL of 11.02 for chloride, which was calculated based on eight baseline sampling events in 2022, during which time concentrations ranged from 1.3 to 9.6 mg/L. There has not yet been a background update for TMW-6 as the May 2024 sampling event was only the third detection monitoring sampling event since the original limit was calculated.

Chloride concentrations in shallow alluvial background monitoring wells located approximately 1 mile to the northwest of the SCPD (BMW-1S and BMW-3S) have ranged from 6.3 to 14.2 mg/L since their installation in 2016, with outliers at BWM-1S of 1.9 and 16.8 mg/L, and at BMW-3S at 7.6 mg/L. Based on baseline sampling, the initial background UPL for chloride was 12.34 mg/L at these shallow background wells. The current UPL as of the latest background updates (completed September 2023) is 13.65 mg/L, which is the limit currently used for the SCPB detection monitoring network. Chloride results through May 2024 at TMW-6 were similar to background concentrations; however, the result from the July verification sampling event is higher. As of this report, data from the November 2024 sampling event is available, and chloride was measured at only 5.1 mg/L on 11/19/2024. This result is well below the current UPL for chloride at TMW-6 and is evidence of the high chloride variability at this well. **Figure 4** displays the greater variability in chloride concentrations at TMW-6 compared to other downgradient SCPD monitoring wells, and the increased concentrations in May and July 2024 do not correspond with CCR placement in the SCPD.

To further investigate the geochemical variability of chloride in the UWL area, the historical data from the state UWL wells (located on the south side of the UWL, outside of the interpreted zone of impact form the SCPA) were reviewed. These UWL wells (labeled "DG-xx") were installed and sampled on at least 8 occasions prior to the receipt of FGD in the SCPC. Each of these DG-xx monitoring wells are screened at approximately the same depth as TMW-6 in the shallow zone of the alluvial aquifer. **Figure 7** displays a box and whisker plot of the chloride concentrations for the DG-xx wells prior to the receipt of FGD in the SCPC (any CCR placement south of Highway 94). This figure shows notable variability in local groundwater chemistry that pre-dates CCR placement in the area. As displayed in **Figure 7**, May and July 2024 sampling results at TMW-6 are well within historical concentration ranges of many DG-xx wells, the closest of which is approximately 700 feet to the south.

This significant pre-CCR variability in chloride concentration near TMW-6 is evidence that the current intrawell UPL for calcium at TMW-6 does not completely account for the natural geochemical variability within the aquifer. As the downgradient SCPD wells were installed in 2022, there has been a limited number of results at these wells over a relatively short period of time. UPLs for these wells were calculated based on 8 initial sampling events over the course of only seven months, which is likely not a long enough time period to capture the full natural variability of the aquifer.

5.4.2 Evaluation of the Statistically Significant Increase of Sulfate at TMW-4 and TMW-5

As discussed in Section 5.3, sulfate may be a good FGD indicator parameter because it is mobile in most geological environments; however, based on surface water sampling near the SEC, sulfate concentrations in the Mississippi and Missouri Rivers were measured as high as approximately 196 mg/L. Therefore, if sulfate concentrations are significantly greater than concentrations in nearby rivers and background groundwater (greater than approximately 200 mg/L), then it may be a good indicator for CCR indicator for fly ash, bottom ash, or FGD

impacts. At concentrations lower than this, sulfate is less effective as an FGD indicator at the SEC, as there are naturally occurring concentrations in a similar range interacting with the local alluvial aquifer.

The time series plot on **Figure 5** shows variability in sulfate concentrations at the TMW wells south of the SCPD since the onset of baseline monitoring. As displayed in the figure, sulfate concentrations ranged from 34.9 to 42.0 mg/L during the eight baseline sampling events at TMW-5 and from 38.3 to 47.7 mg/L at TMW-4. Baseline sampling was completed within a 7-month period from April 2022 through October 2022. Since the completion of baseline sampling, sulfate has ranged from 38.3 to 73.9 mg/L at TMW-4 and 39.7 to 72.9 mg/L at TMW-5.

Figure 8 displays a box and whisker plot of the sulfate concentrations observed at the DG-xx wells prior to the receipt of CCR in the SCPC, SCPD, and SCL4A (prior to 7/30/2010). These plots reflect the high variability of sulfate in the vicinity of the SCPD, prior to any potential impacts from CCR placed in the area. As shown in **Figure 8**, the recent results at TMW-4 and TMW-5 are within range of sulfate concentrations at the DG-xx wells prior to CCR placement. Concentrations in these wells range from 11.0 to 83.0 mg/L, which is greater than the current sulfate UPLs at TMW-4 and TMW-5.

Based on these data, the variability in sulfate concentrations observed at downgradient monitoring wells over time is not a result of SCPD CCR influence on surrounding groundwater. Additionally, sulfate concentrations within the Missouri River to the south of the SEC averaged approximately 192 mg/L, as shown in **Table 2**, which is significantly greater than the sulfate SSIs at TMW-4 and TMW-5. The Missouri River is a potential alternative source of sulfate to the groundwater at the SEC and likely contributes to the sulfate variability at the site, especially during times of northward flow from the Missouri River towards the Mississippi River. The SSI for sulfate is likely a result of geochemical variability of the aquifer that has not been captured by groundwater sampling to-date.

In addition to the natural variability discussed above, during data validation procedures for the May 2024 detection monitoring event, the sulfate result at TMW-4 was flagged as an estimate (J+), indicating that the result may be biased high. At the time of sampling, additional sample volume was collected at the well for matrix spike (MS) and matrix spike duplicate (MSD) samples in accordance with quality assurance and quality control (QA/QC) procedures specified in the GMP for the SCPD. The laboratory data packet notes that MS and MSD recoveries associated with sulfate analysis at TMW-4 greatly exceeded control limits established by the laboratory. Therefore, the reported sulfate concentration at TMW-4 may be greater than the true concentration present in the well at that time.

6.0 DEMONSTRATION THAT SSI WAS NOT CAUSED BY SCPD IMPACTS

Based on the information presented in Section 5.0 above, the SSIs reported for chloride at TMW-6 and sulfate at TMW-5 and TMW-6 in the May 2024 sampling event are not the result of impacts from the SCPD. The following lines of evidence support this conclusion:

- Key FGD indicator parameters such as boron, fluoride and calcium are not elevated when comparing pre-CCR sampling results with current results.
- Variable sulfate and chloride concentrations that are greater than those at TMW-4, TMW-5, and TMW-6 exist immediately to the south, southwest, and southeast of TMW-4, TMW-5, and TMW-6, which predate CCR placement in the UWL (prior to June 30, 2014).
- Current UPLs for each of these wells were calculated from only eight baseline sampling events, which likely do not capture the full natural geochemical variability of the aquifer.
- Significant changes to the ground surface and groundwater recharge in the area of TMW-4, TMW-5, and TMW-6 with the installation of the SCPD and various haul roads in the past three years.

Based on data validation procedures, the reported May 2024 sulfate result at TMW-4 may be biased higher than the true concentration at that time.

Along with these lines of evidence listed above, the SCPD is lined with a bottom composite liner system consisting of two feet of compacted clay soil with a hydraulic conductivity of less than 1 X 10⁻⁷ centimeters per second (cm/sec) overlain by a 60-mil flexible high-density polyethylene (HDPE) geomembrane liner which was designed and constructed to properly contain CCR and prevent groundwater impacts.

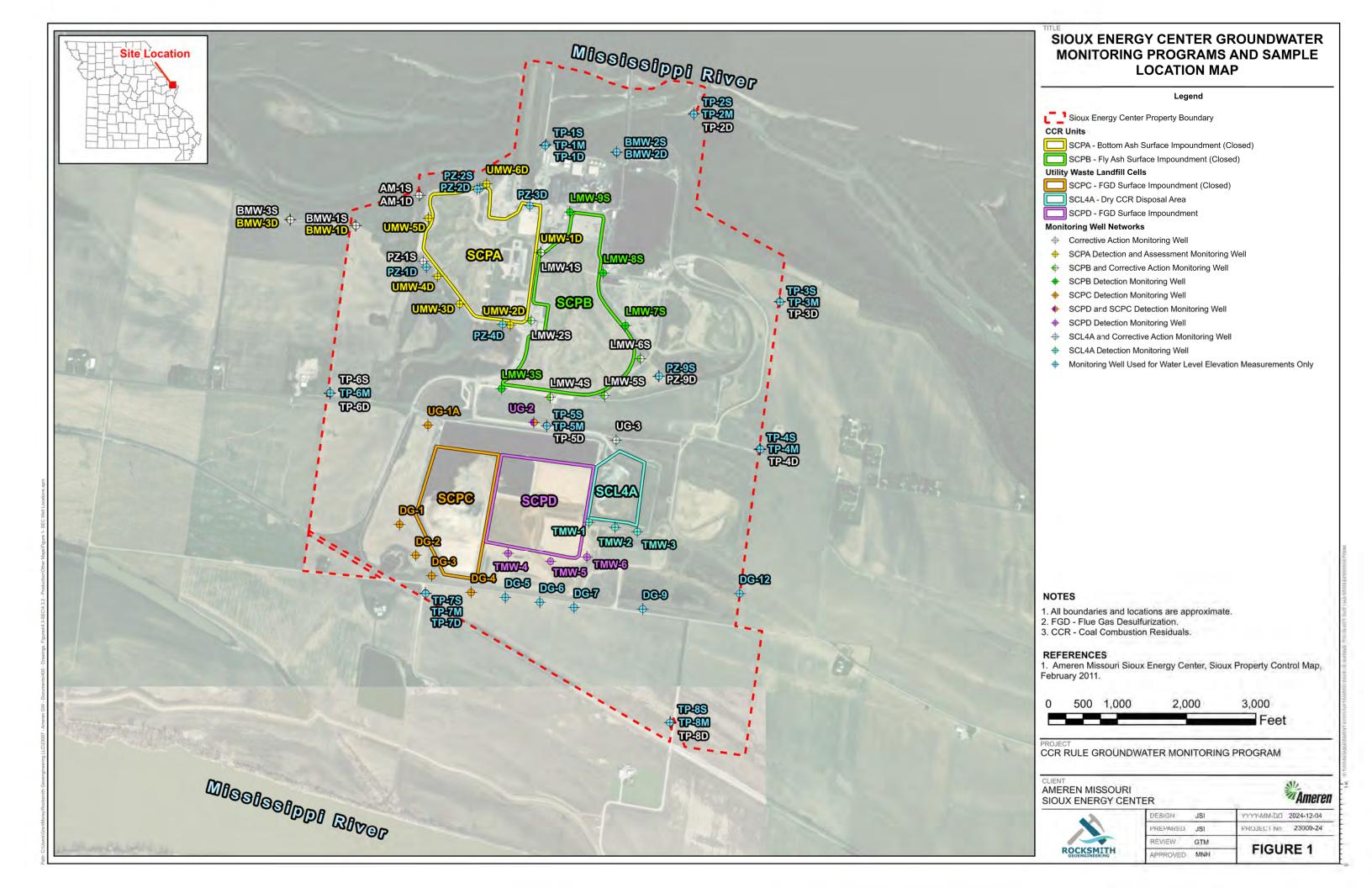
7.0 REFERENCES

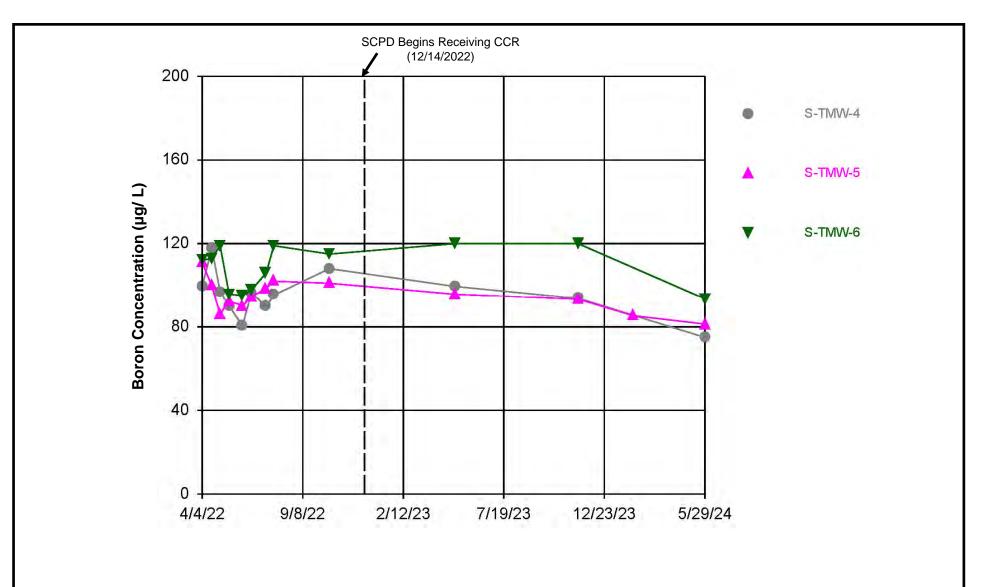
Ameren Missouri. 2016. Structural Integrity Criteria & Hydrologic/Hydraulic Capacity Assessment, Sioux Energy Center.

- Electric Power Research Institute (EPRI). 1998, Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: SX Site. Report TRACE-108409. September 1998.
- Electric Power Research Institute (EPRI). 2011, Composition and Leaching of FGD Gypsum and Mined Gypsum, Report 1022146. November 2011.
- Electric Power Research Institute (EPRI). 2012, Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate, Report 1017923. October 2012.
- Electric Power Research Institute (EPRI). 2017, Guidelines for Development of Alternative Source Demonstrations at Coal Combustion Residual Sites, Report 3002010920, October 2017.
- GREDELL Engineering Resources, Inc. 2006. Detailed Geologic and Hydrologic Site Investigation Report. AmerenUE Sioux Power Plant Proposed Utility Waste Disposal Area. St. Charles County, Missouri. August 2006.
- GREDELL Engineering Resources, Inc. 2009. Background Groundwater Monitoring Report. AmerenUE Sioux Power Plant. St. Charles County, Missouri. June 2009.
- Johnson, A.I. 1967. Specific Yield Compilation of Specific Yields for Various Materials: U.S. Geological Survey Water-Supply Paper 1662-D. Available at: https://pubs.er.usgs.gov/publication/wsp1662D.
- MDNR. 2011. Missouri Well Construction Rules. Missouri Department of Natural Resources Division of Geology and Land Survey. Rolla, MO. August 2011.
- Reitz & Jens, Inc., and GREDELL Engineering Resources, Inc. 2014. Ameren Missouri Sioux Power Plant Utility Waste Landfill Proposed Construction Permit Modification Construction Permit Number 0918301 St. Charles County, Missouri, revised August 2014.
- Rocksmith Geoengineering, LLC, 2024a, 2023 Annual Groundwater Monitoring Report, SCPD Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA.
- Rocksmith Geoengineering LLC, 2024b, Updated Statistical Limits with Additional Background Data, SCPD CCR Unit, Sioux Energy Center, St. Charles, Missouri.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery Program Implementation and Information Division. March 2009.
- USEPA. 2015. Federal Register. Volume 80. No. 74. Friday April 17, 2015. Part II. Environmental Protection Agency. 40 CFR Parts 257 and 261. Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities; Final Rule/ [EPA-HQ-RCRA-2009-0640; FRL-9919-44-OSWER].
- WSP USA Inc., 2022, 40 CFR Part 257 Groundwater Monitoring Plan, SCPD Sioux Energy Center St. Charles County, Missouri, USA.
- WSP USA Inc., 2022, Initial Detection Monitoring Upper Prediction Limits Using Baseline Sampling Data Utility Waste Landfill Cell 2 (SCPD), Sioux Energy Center, St. Charles Count, Missouri.
- WSP USA Inc., 2023, 2022 Annual Groundwater Monitoring Report, SCPD Surface Impoundment, Sioux Energy Center St. Charles County, Missouri, USA.

Tables

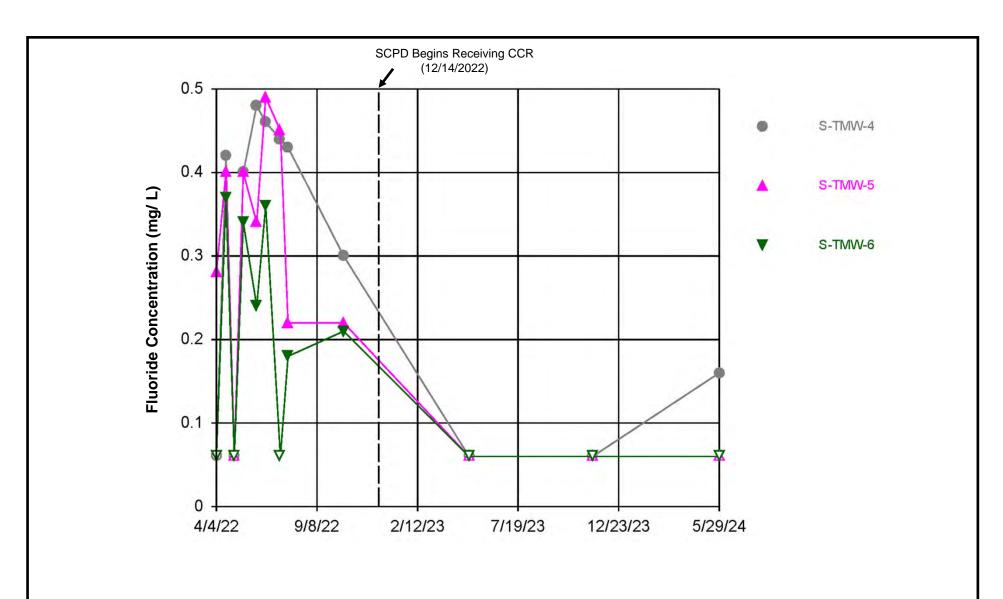
Table 1 May 2024 Detection Monitoring Results SCPD Surface Impoundment Sioux Energy Center, St. Charles County, MO


		BACKGR	OUND			GROU	JNDWATER M	IONITORING W	/ELLS		
ANALYTE	UNITS	BMW-1S	BMW-3S	Prediction Limit UG-2	UG-2	Prediction Limit TMW-4	TMW-4	Prediction Limit TMW-5	TMW-5	Prediction Limit TMW-6	TMW-6
			•	May 2024	Detection Mc	nitoring Event					
DATE	NA	5/28/2024	5/28/2024	NA	5/28/2024	NA	5/29/2024	NA	5/29/2024	NA	5/29/2024
рН	SU	6.86	6.95	6.29 - 7.50	7.04	6.585-7.26	7.16	6.642-7.223	7.02	6.59-7.093	6.88
BORON, TOTAL	μg/L	58.1 J	54.1 J	277.7	143	122.2	74.9 J	116.0	81.3 J	131.8	93.5 J
CALCIUM, TOTAL	μg/L	133,000	116,000	143,772	87,100	146,033	96,800	156,060	109,000	179,541	143,000
CHLORIDE, TOTAL	mg/L	10.1	11.1	93.74	6.7	3.216	2.1 J	2.435	1.6	11.02	16.5
FLUORIDE, TOTAL	mg/L	ND	ND	0.34	ND	0.48	0.16 J	0.6744	ND	0.37	ND
SULFATE, TOTAL	mg/L	37.7	19.7	93.63	35.8	44.43	73.9 J	46.12	72.1	51.85	45.8
TOTAL DISSOLVED SOLIDS	mg/L	470	529	657.3	335	571	381	600.6	403	719.8	499
				July 2024	Verification Sa	ampling Event					
DATE	NA						7/29/2024		7/29/2024		7/29/2024
рН	SU										
BORON, TOTAL	μg/L										
CALCIUM, TOTAL	μg/L										
CHLORIDE, TOTAL	mg/L										28.2 J
FLUORIDE, TOTAL	mg/L										
SULFATE, TOTAL	mg/L						69.2 J		64.6		
TOTAL DISSOLVED SOLIDS	mg/L										


NOTES:

- 1. Unit Abbreviations: μg/L micrograms per liter, mg/L milligrams per liter, SU standard units.
- 2. J Result is an estimated value.
- 3. NA Not applicable.
- 4. Prediction Limits calculated using Sanitas Software.
- 5. Values highlighted in yellow indicate a Statistically Significant Increase (SSI).
- 6. Only analytes/wells that were detected above the prediction limit were tested during Verification Sampling.
- 7. ND Constituent was analyzed but was not detected above the Method Detection Limit (MDL) or the adjusted Practical Quantitation Limit (PQL) based on data validation and is considered a non-detect. Values displayed as ND.

Figures

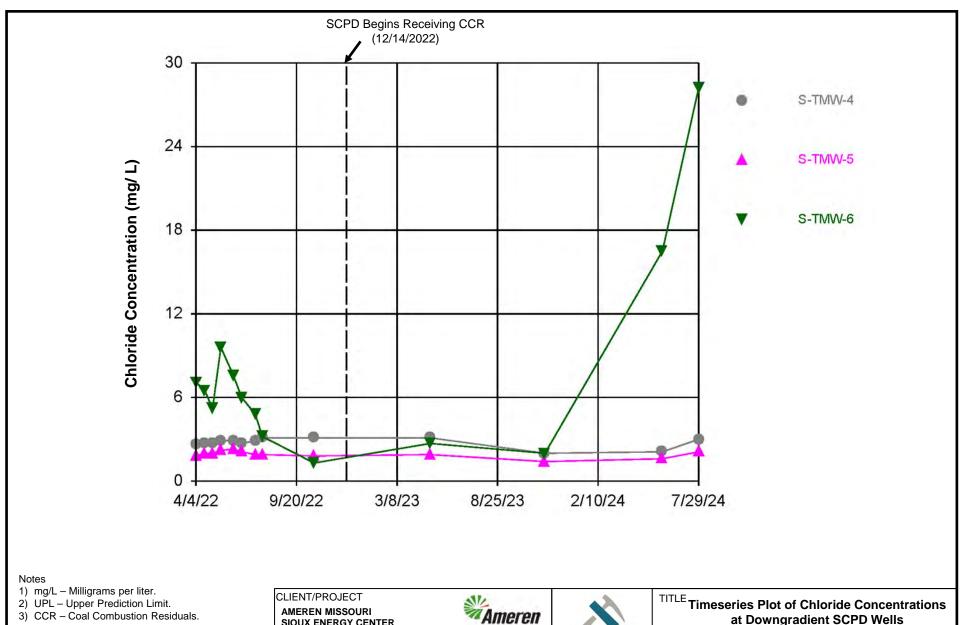

μg/L – Micrograms per liter.
 UPL – Upper Prediction Limit.
 CCR – Coal Combustion Residuals.

CLIENT/PRO	JECT	.47	71
AMEREN MIS SIOUX ENER		W.	Ameren
DRAWN	CHECKED GTM	REVIEWED MNH	DATE 2024-12-30

ROCKSMITH

TITLE Timeseries Plot of Boron Concentrations at **Downgradient SCPD Wells**

FIGURE 2 Rev No. NA JOB NO. 23009-24

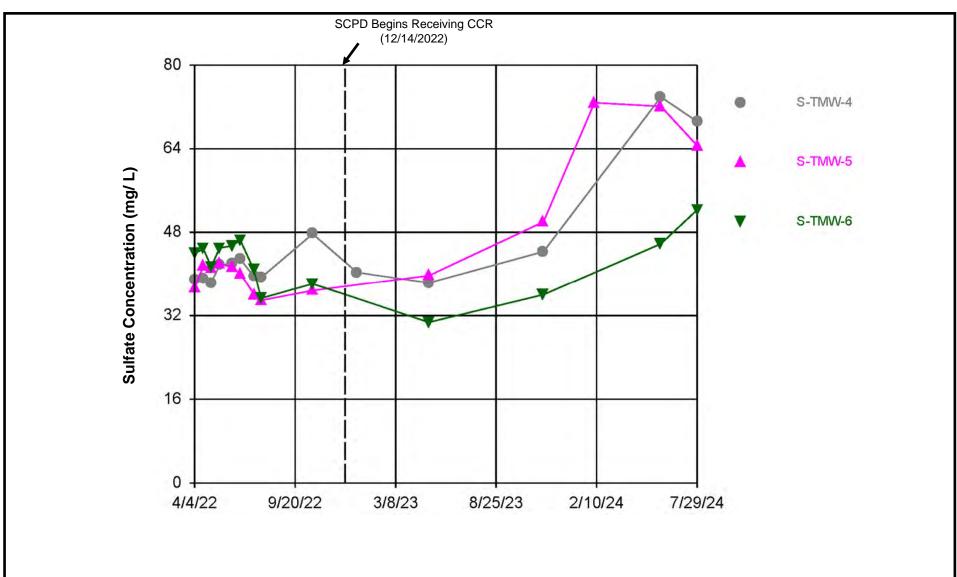

mg/L – Milligrams per liter.
 UPL – Upper Prediction Limit.
 CCR – Coal Combustion Residuals.

CLIENT/PRO	JECT	4	70	
AMEREN MIS SIOUX ENER	SSOURI GY CENTER	Amere		
DRAWN JSI	CHECKED GTM	REVIEWED MNH	DATE 2024-12-30	

ROCKSMITH

TITLE Timeseries Plot of Fluoride Concentrations	
at Downgradient SCPD Wells	

FIGURE 3 Rev No. NA JOB NO. 23009-24

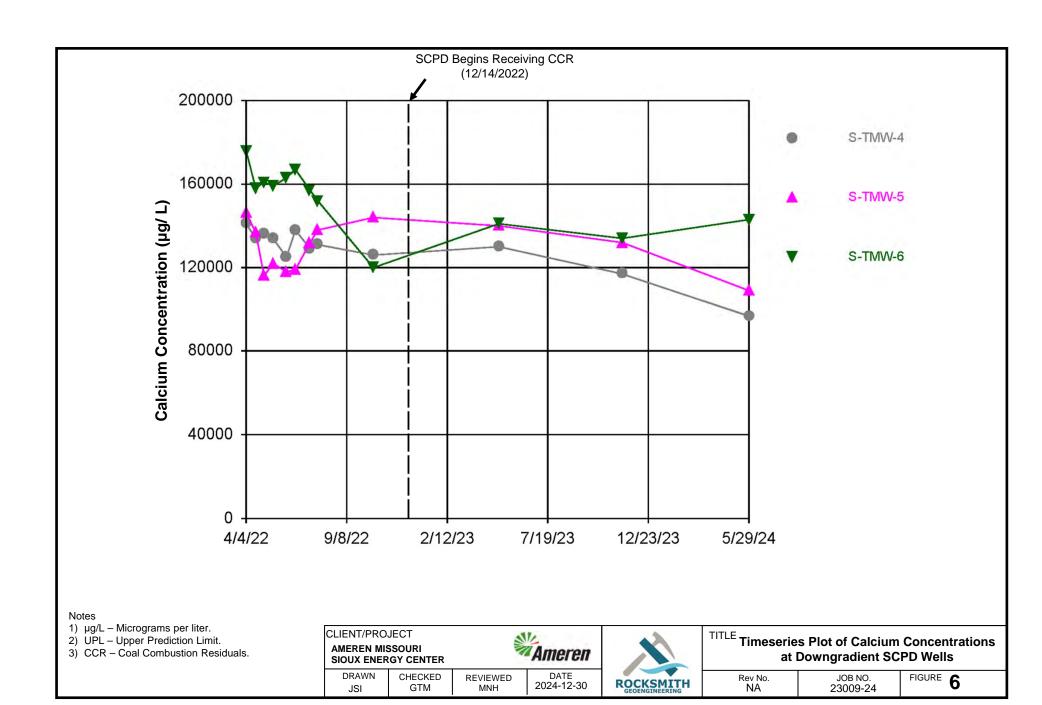


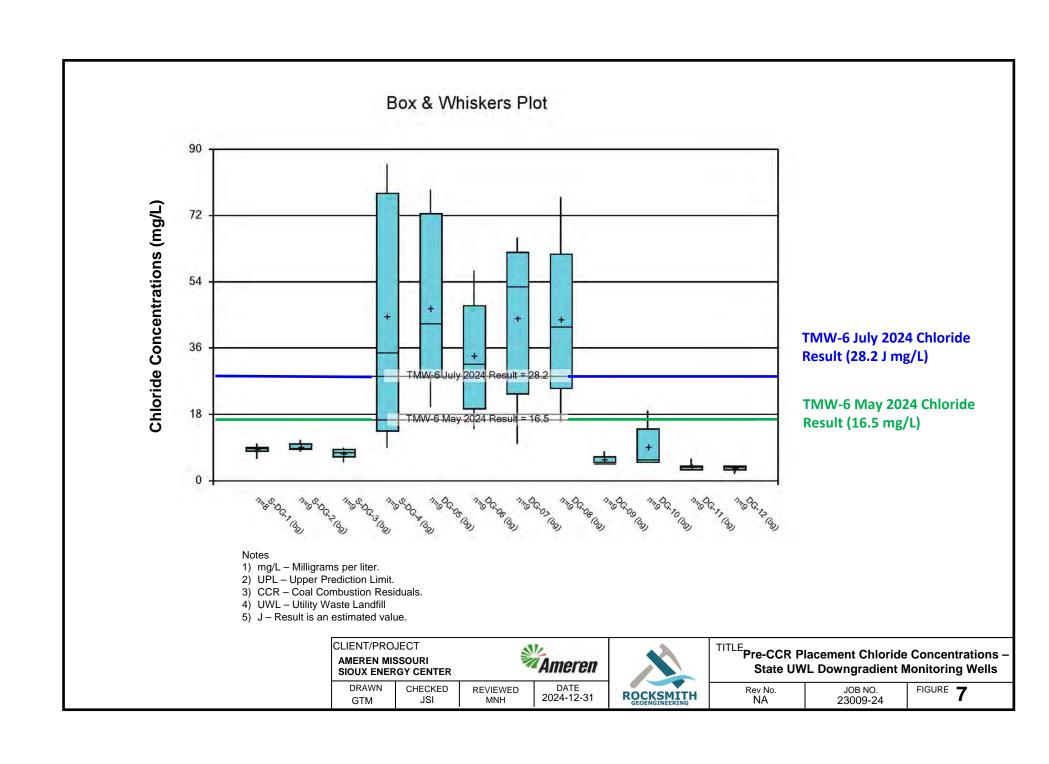
CLIENT/PRO	JECT	4	71
AMEREN MIS	SSOURI RGY CENTER		Ameren
DRAWN JSI	CHECKED GTM	REVIEWED MNH	DATE 2024-12-30

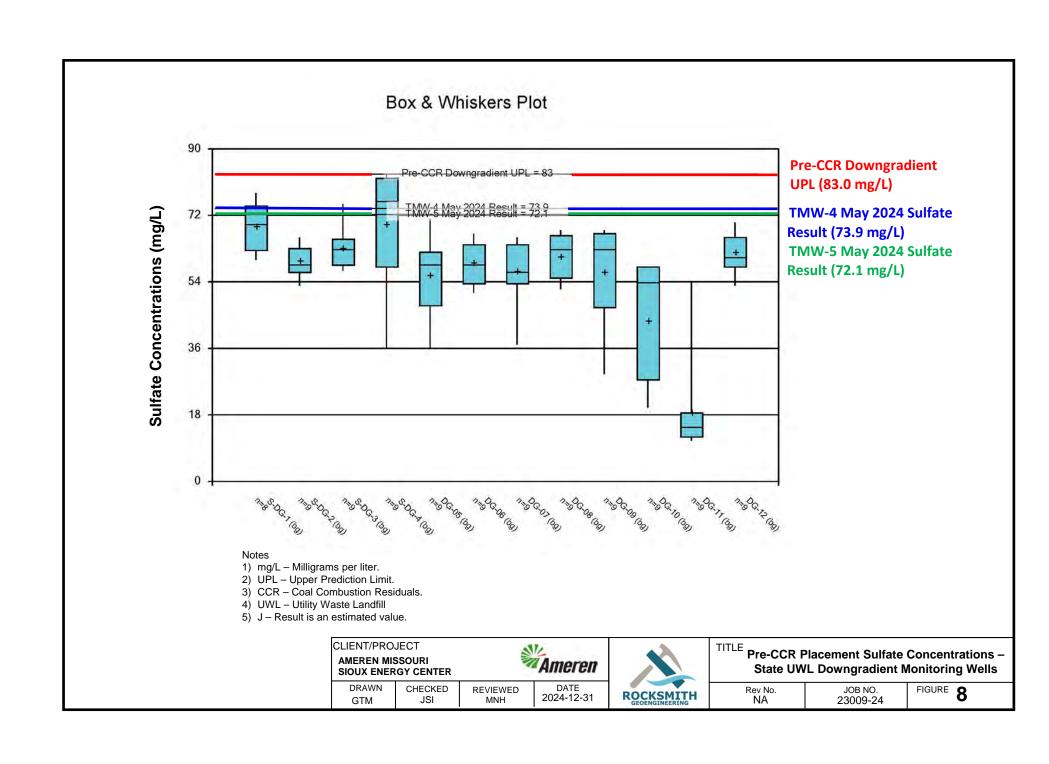
ROCKSMITH

TITLE Timeseries Plot of Chloride Concentrations at Downgradient SCPD Wells

Rev No.	JOB NO.	FIGURE 1
NA	23009-24	4

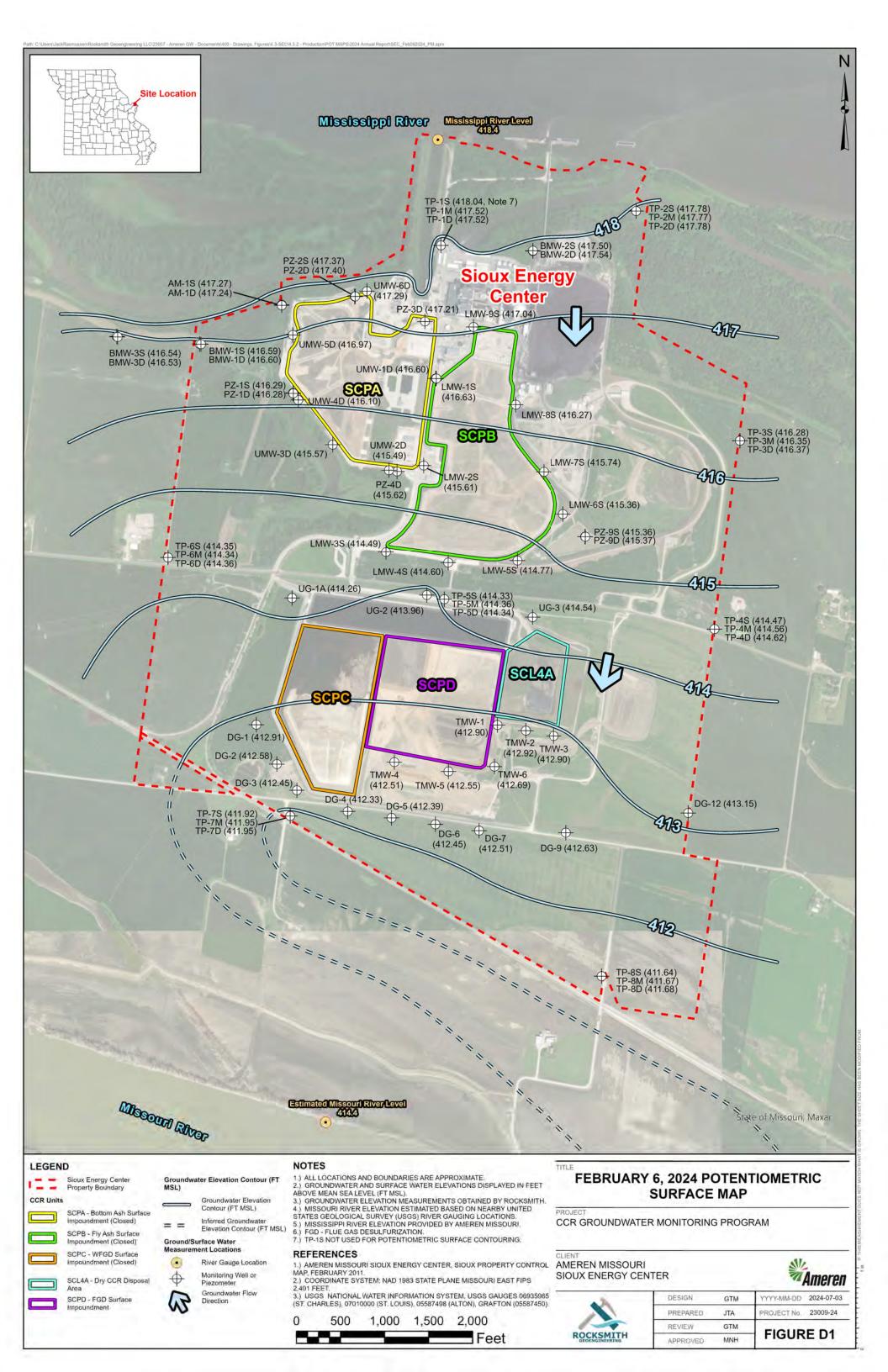

mg/L – Milligrams per liter.
 UPL – Upper Prediction Limit.
 CCR – Coal Combustion Residuals.

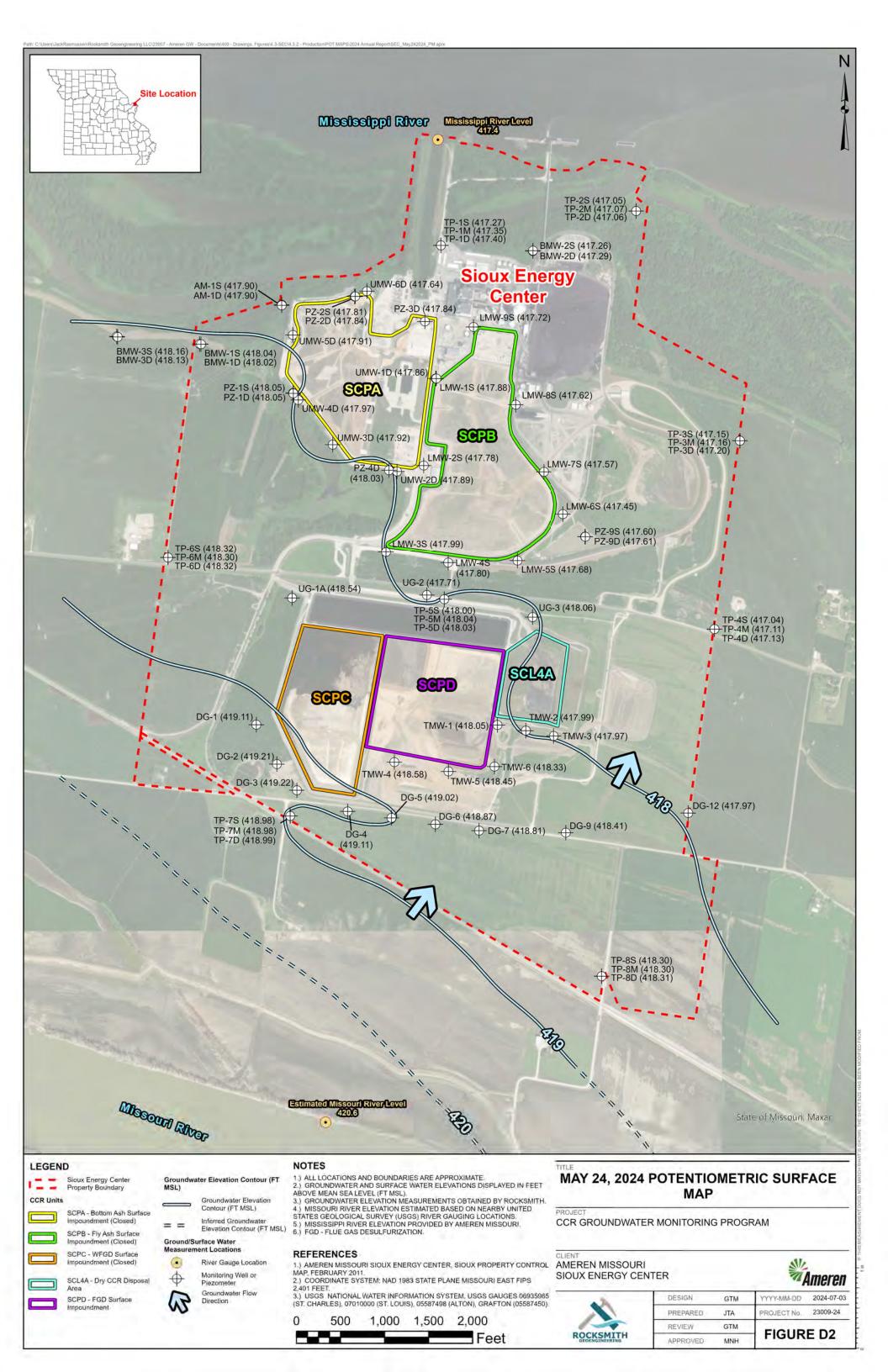

CLIENT/PRO	JECT	SV	
AMEREN MISSOURI SIOUX ENERGY CENTER		Ameren	
DRAWN JSI	CHECKED GTM	REVIEWED MNH	DATE 2024-12-30

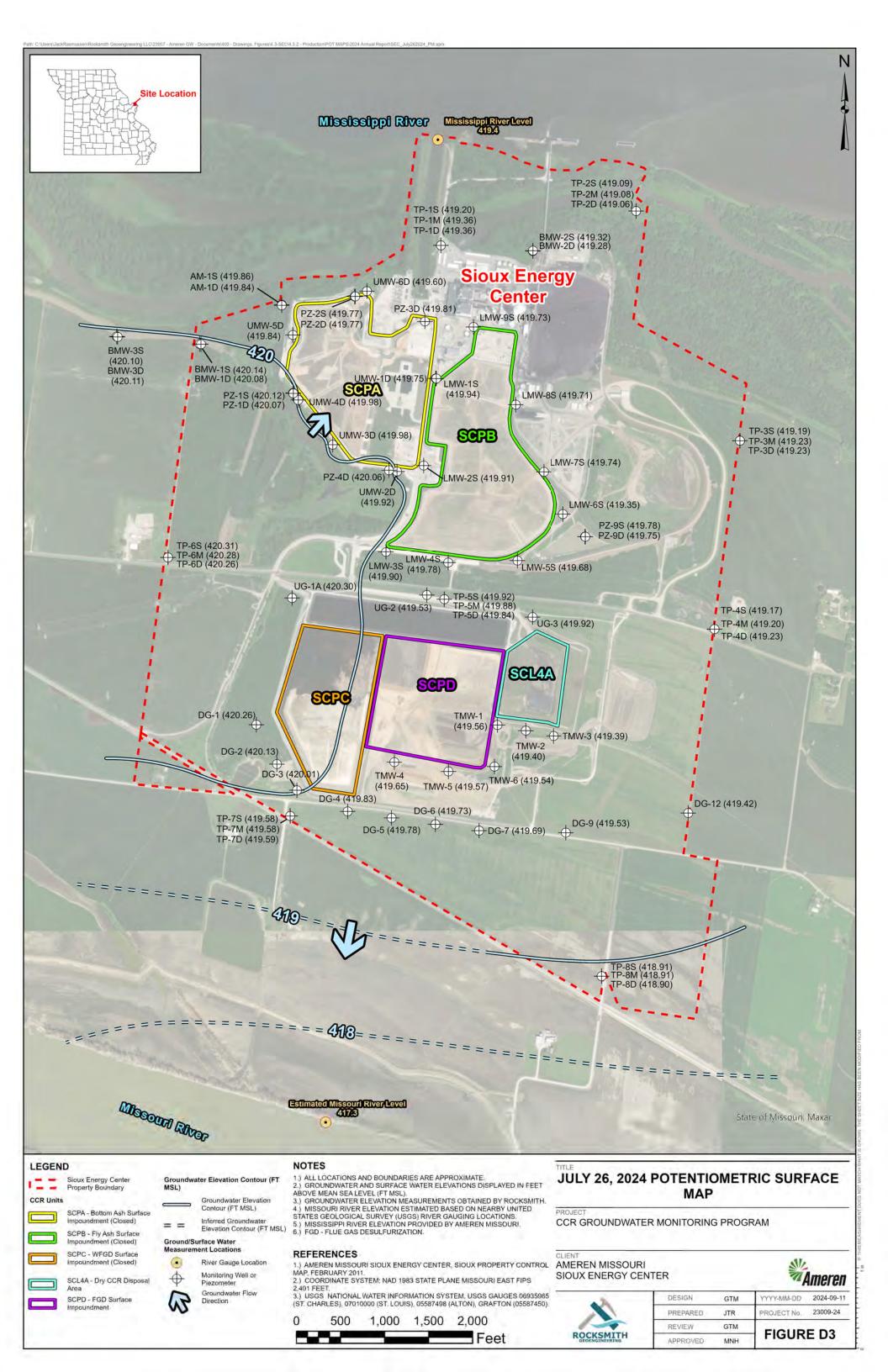

ROCKSMITH

Timeseries Plot of Sulfate Concentrations	
at Downgradient SCPD Wells	

Rev No.	JOB NO.	FIGURE 🗲
NA	23009-24	J






Project Number: 23009-24

